期刊文献+

理性设计提高β-葡萄糖醛酸苷酶的热稳定性 被引量:2

Improvement of thermostability of β-glucuronidase through rational design
下载PDF
导出
摘要 采用同源序列比对策略和脯氨酸效应的设计策略,以同源建模的三维结构为基础,结合定点突变技术,对重组产紫青霉β-葡萄糖醛酸苷酶(PGUS-E)进行理性设计,获得了2个热稳定性明显提高的突变体PGUS-E I130V和PGUS-E G280P,再将突变位点进行组合获得突变体PGUS-E I130V+G280P。相比PGUS-E,PGUS-E I130V、PGUS-E G280P和PGUS-E I130V+G280P在60℃下的半衰期T1/2分别比原始酶的23 min提高3.5倍,5倍和5.5倍,达到82 min,117 min和128min。突变体的动力学参数Kcat/Km值分别为1.534×107 mol-1·L·min-1,1.368×107mol-1·L·min-1和1.283×107 mol-1·L·min-1,与原始酶(1.316×107 mol-1·L·min-1)接近,对底物的亲和力基本不变。结果表明在蛋白质构象不稳定的区段中引入脯氨酸,以及在相应位置引入嗜热菌的氨基酸,均可提高蛋白质热稳定性。 The rational design for enhancing protein thermostability has become a hot issue in ennzyme engineering. A three-dimensional structure was modeled by the SWISS-MODEL, which was very helpful for the rational design to engineer the recombinant β-glucuronidase from Penicillium purpurogenum Li-3 expressed in E. coli(PGUS-E). By using the design strategy of homologous sequence alignment and introducing proline mutation at appropriate sites, a simple site-directed mutagenesis protocol was developed to enhance thermostability of PGUS-E. Two mutant enzymes with higher thermostability were obtained: PGUS-E I130 V and PGUS-E G280 P. Then, these two sites were combined and mutant PGUS-E I130V+G280P was obtained. Further analysis of their thermostability at 60℃ and kinetics were performed. Compared to PGUS-E, thermostability of mutants was significantly improved, and the halftime(T1/2, 60℃) of mutants I130 V, G280 P and I130V+G280P increased by 3.5 times,5 times and 5.5 times, respectively, while Kcat/Km of mutant enzyme remained nearly unchanged. This study provided a successful case of rational design to improve protein thermostability.
出处 《化工学报》 EI CAS CSCD 北大核心 2015年第6期2205-2211,共7页 CIESC Journal
基金 国家自然科学基金项目(21376028 21176028)~~
关键词 Β-葡萄糖醛酸苷酶 分子模拟 动力学 蛋白质稳定性 理性设计 同源比对 脯氨酸 β-glucuronidase molecular simulation kinetics protein stability rational design homologousalignment proline
  • 相关文献

参考文献1

二级参考文献15

  • 1李斌,江涛,万升标,任素梅.甘草次酸的化学修饰和结构改造研究进展[J].精细化工,2006,23(7):643-648. 被引量:11
  • 2Henrissat B. A classification of glycosyl hydrolases based on amino-acid-sequence similarities. Biochemical Journal, 1991, 280:309-316.
  • 3Chouiter R, Roy I, Bucke C. Optimisation of beta- glucuronidase production from a newly isolated Ganoderma applanatum. Journal of Molecular Catalysis B Enzymatic, 2008, 50:114-120.
  • 4Jefferson RA. The gus reporter gene system. Nature, 1989, 342 (6251): 837-838.
  • 5Cinatl J, Morgenstern B, Bauer G, Chandra P, Rabenau H, Doerr H W. Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus. Lancet, 2003, 361 (9374): 2045 2046.
  • 6LingGuanting(凌关庭).FoodAdditive(食品添加剂手册).3rded.Beijing:Chemical Industry Press,2003:165.
  • 7Takashi Kuramoto S K. Microbial production of glycyrrhetic acid 3-O-mono- β-D-glucuronide from glycyrrhizin by Cryptococcus magnus MG-27. Biosci. Biotech. Biochem. , 1994, 58:455-458.
  • 8Kim D H, Lee S W, Han M J. Biotransformation of glycyrrhizin to 18 beta-glycyrrhetinic acid-3-O-beta-D- glucuronide by Streptococcus LJ-22, a human intestinal bacterium. Biological & Pharmaceutical Bulletin, 1999, 22 (3): 320-322.
  • 9Akao T. Hasty effect on the metabolism of glycyrrhizin by Eubacterium sp GLH with Ruminococcus sp PO1-3 and Clostridium innocuum ES24-06 of human intestinal bacteria. Biological & Pharmaceutical Bulletin, 2000, 23 ( 1 ) : 6-11.
  • 10Lu D Q, Li H, Dai Y, Ouyang P K. Biocatalytic properties of a novel crude glycyrrhizin hydrolase from the liver of the domestic duck. B Enzymatic, 2006, 43 Journal of Molecular Catalysis (1/2/3/4): 148-152.

共引文献11

同被引文献67

  • 1李琴梅,戚勃.琼脂的物化特性及其在食品工业中的应用[J].中国食品添加剂,2009,20(6):170-174. 被引量:47
  • 2BORNSCHEUER U T, HUISMAN G W, KAZLAUSKAS R Let al. Engineering the third wave of biocatalysis [J]. Nature, 2012, 485 (7397): 185-194.
  • 3STEPANKOVA V, BIDMANOVA S, KOUDELAKOVA T, et al. Strategies for stabilization of enzymes in organic solvents [J]. ACS Catalysis, 2013, 3 (12): 2823-2836.
  • 4VERONESE F M, LARGAJOLLI R, BOCCU E. et al. Surface modification of proteins--activation of monomethoxy-polyethylene glycols by phenylchlorofomates and modification of ribonucleasc and superoside-dismutase [J]. Applied Biochemistry and Bioteehnology, 1985, 11 (2): 141-152.
  • 5GONZALEZ-VALDEZ J, RITO-PALOMARES M, BENAVIDES J. Advances and trends in the design, analysis, and characterization of polymer-protein conjugates for "PEGylaided" bioprocesses [J]. Analytical and Bioanalytical Chemistry, 2012, 403 (8): 2225-2235.
  • 6CASTILLO B, SOLA R J, FERRER A, et al. Effect of PEG modification on subtilisin Carlsberg activity, enantioselectivity, and structural dynamics in 1,4-dioxane [J]. Biotechnology and Bioengineering, 2008, 99 (1): 9-17.
  • 7LI C M, HUANG M, GU Z B, et al. Nanosilica sol leads to further increase in polyethylene glycol (PEG) 1000-erlhanced thermostability of beta-cyclodextrin glycosyltransferase from Bacillus circulans [J]. Journal of Agricultural and Food Chemistry, 2014, 62 (13): 2919-2924.
  • 8DABA T, KOJIMA K, INOUYE K. Chemical modification of wheat 13-amylase by trinitrobenzenesulfonic acid, methoxypolyethylene glycol, and glutaraldehyde to improve its thermal stability and activity [J]. Enzyme and Microbial Technology, 2013, 53 (6/7): 420-426.
  • 9ISMAYA W T, HASAN K, KARDI I, et al. Chemical modification of Saeeharomycopsis fibuligera R64 alpha-amylase to improve its stability against thermal, chelator, and proteolytic inactivation [J]. Applied Biochemistry andBiotechnology, 2013, 170 (1): 44-57.
  • 10LOZANO P, DE DIEGO T, SAUER T, et al. On the importance of the supporting Candida antarctica lipase B in material for activity of immobilized ionic liquid/hexane and ionic liquid/supercritical carbon dioxide biphasic media [J]. Journal of Supercritical Fluids, 2007, 40 (1): 93-100.

引证文献2

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部