摘要
运用主成分分析法构建了水库移民后期扶持政策实施效果综合评价的经济效益和社会效益评价指标体系,对指标体系进行整体优化;考虑评价指标的复杂性和评价过程的非线性特点,建立了基于RBF神经网络的经济效益与社会效益评价模型,通过实际调研数据对模型的有效性进行验证,为水库移民后期扶持政策的实施与完善提供参考依据。
The principal components analysis method is used to construct the economic and social evaluation system of implementation effect on later-period supportive policy of reservoir resettlement, and the index system is optimized. After considering the complexity of evaluation index and the nonlinear characteristics of evaluation process, the economic and social evaluation model is also built based on RBF-Neural networks. The validity of the model is verified by actual survey data. It provides a reference for the implementation and improvement of later-period supportive policy of reservoir resettlement.
出处
《水力发电》
北大核心
2015年第6期11-13,共3页
Water Power
基金
国家自然科学基金资助项目(51179002)
北京市属高等学校高层次人才引进与培养计划项目(CIT&TCD201404031)
关键词
综合评价
水库移民
后期扶持
实施效果
主成分分析法
人工神经网络
comprehensive evaluation
reservoir resettlement
later-period support
implementation effect
principalcomponent analysis
artificial neural network