期刊文献+

大数据技术在航天领域发展与应用 被引量:14

Development and Application of Big Data Technology in Aerospace Field
下载PDF
导出
摘要 当今世界已经进入大数据和云计算引领的信息技术新时代。新的信息架构正在引发各行业工作模式和思维方式的变革,航天领域也不例外。分析若干大数据关键技术在航天领域的适用性,提升航天大数据资产意识。给出北京遥测技术研究所将大数据技术应用于航天领域所做的有益探索,进而提出航天发展大数据技术的八项益处。从实际应用角度出发探索在航天领域应用大数据技术,对航天技术的发展有着积极的意义。 The current world has come into a new era of information technology led by big data and cloud computing technolo- gies. Meanwhile, the evolutions of pattern of working and way of thinking are being raised in many fields as well as in the aerospace field. To make the space big data a kind of property, the applicability of several key technologies of big data in the aerospace field is analyzed. Furthermore, study cases by BRIT to explore how to use the big data technology to promote space projects/tasks are intro- duced. Finally some benifits on developing the space big data technology are given at eight aspects. The work to explore the applica- tion of big data technology in the aerospace field can facilitate the development of aerospace technology.
出处 《遥测遥控》 2015年第2期1-9,共9页 Journal of Telemetry,Tracking and Command
关键词 大数据 云计算 航天 Big data Cloud computing Aerospace
  • 相关文献

参考文献21

  • 1Manyika J, Chui M, Brown B, et al. Big Data: The Next Frontier for Innovation,Competition, and Productivity [ R]. McKinsey Global Institute, 2011 : 1 - 137.
  • 2Big Data Across the Federal Government [ R/OL]. www. whitehouse, gov/sites/default/files/microsites/ostp/big_data_ fact_sheet_final_l, pdf, March 29,2012.
  • 3Open Data Set[ DB/OL]. https ://open-data. europa, eu/en/data/dataset, May 30,2014/January 26,2015 .
  • 4Big Data for Development : Challenges & Opportunities [ R/OL ]. http ://unglobalpulse. org/sites/default/files/BigDat- aforDevelopment-UNGlobalPulseJune2012, pdf, May ,2012.
  • 5Hadoop [ EB/OL]. http://hadoop, apache, org/December 12,2014/January 26,2015.
  • 6NASA. Tech Briefs[ R~. June 2013.
  • 7James Williams. NASA~s Nebula Cloud Computing Initiative, Cloud Innovation at NASA [ C ]//NASA Ames Research Center, February 2012.
  • 8Dean J, Ghemawat S. Map Reduce: Simplified Data Processing on Large Clusters [ C ]//In Proceedings of the Sixth Symposium on Operating System Design and Implementation, San Francisco, CA:Usenix Association, 2004.
  • 9Cloud Computing for Aerospace and Defense[ M]. IBM Sales and Distribution White paper.
  • 10李国杰,程学旗.大数据研究:未来科技及经济社会发展的重大战略领域——大数据的研究现状与科学思考[J].中国科学院院刊,2012,27(6):647-657. 被引量:1605

二级参考文献18

  • 1Chris Anderson. The End of Theory: The Data Deluge Makes the Scientific Method Obsolete. Wired, 2008, 16 (7).
  • 2Albert-L~iszl6 Barab~isi. The network takeover. Nature Physics, 2012,8(1): 14-16.
  • 3Reuven Cohen, Shlomo Havlin. Scale-Free Networks Are U1- trasmall. Physical Review Letters, 2003, 90,(5 ).
  • 4Tony Hey, Stewart Tansley, Kristin Tolle (Editors). The Fourth Paradigm: Data-Intensive Scientific Discovery. Microsoft, 2009 October 16.
  • 5Big Data. Nature, 2008, 455(7 209): 1-136.
  • 6Dealing with data. Science, 2011,331 ( 6 018 ): 639-806.
  • 7Complexity. Nature Physics, 2012, 8( 1 ).
  • 8Big Data. ERCIM News, 2012, (89).
  • 9David Lazer, Alex Pentland, Lada Adamic et al. Computational Social Science. Science, 2009, 323 ( 5 915 ): 721-723.
  • 10The 2011 Digital Universe Study: Extracting Value from Chaos. International Data Corporation and EMC, June 2011.

共引文献1604

同被引文献65

引证文献14

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部