期刊文献+

改进模型参考自适应控制及其在解耦控制中的应用 被引量:9

Improved model reference adaptive control and its application in decoupled control
下载PDF
导出
摘要 提出了一种基于扩张状态观测器(extended state observer,ESO)的任意参考模型自适应控制方法,解决了被控对象状态信息不可测以及存在不确定因素导致模型参考自适应控制(model reference adaptive control,MRAC)效果变差甚至使系统不稳定的问题。在简述ESO教学模型的基础上提出了基于ESO的模型参考自适应控制方法并进行了严格的稳定性分析,仿真结果表明所设计方法具有跟踪速度快、稳态误差小、控制量小以及参考模型容易选择等特点。然后,提出基于改进MRAC的解耦控制方法并应用于三输入三输出的四旋翼飞行器姿态控制系统解耦控制,仿真结果表明该解耦控制方法具有鲁棒性好的特点。该方法无需按照通常的做法设计神经网络对不确定因素导致的误差进行补偿,大大简化了控制器设计过程。 An improved adaptive control with arbitrary reference mode was presented based on the extend-ed state observer ( ESO) , focusing on solving the problems:( i) the system state is not measurable;( ii) the model reference adaptive control ( MRAC ) is less effective or even make the system unstable when there exist internal or external uncertainties. After briefly describing the mathematical model of ESO, the improved MRAC was put forward and a strict stability analysis was given. The simulation results show that the improved MRAC possesses quick tracking rate, high steady state accuracy and small control moment, including easily choosing a reference model. Then, a robust decoupling control method based on the im-proved MRAC was proposed and applied to decoupling control of the attitude control for the quadrotor air-craft with three inputs and three outputs. The simulation result shows that it has strong robustness. It is not necessary to design a neural network as usual to compensate for the uncertainties, which greatly sim-plified the process of controller design.
出处 《电机与控制学报》 EI CSCD 北大核心 2015年第5期112-120,共9页 Electric Machines and Control
基金 总装创新工程项目 预研基金项目
关键词 模型参考自适应控制 扩张状态观测器 解耦控制 四旋翼飞行器 姿态控制 model reference adaptive control extended state observer decoupling control quadrotor aircraft attitude control
  • 相关文献

参考文献21

  • 1BECHLIOULIS C P, ROVITHAKIS G A. Robust adaptive control of feedback linearizable MIMO nonlinear systems with prescribed performane[ J]. IEEE Transactions on Automatic Control, 2008,53 (9): 2090-2098.
  • 2YANG C G, ZHAI L F. Adaptive model reference control of a class of MIMO discrete-time systems with compensation of nonpara- metric uncertainty[ C]//Proceedings of American Control Canfer- ene, June 11 -13, 2008, Seattle, USA. 2008:4111 -4116.
  • 3KIM N, CALISE A J. Neural network based adaptive output feed- back augmentation of existing controllers [ J ]. Aerospace Science and Technology, 2008, 12 (3): 248-255.
  • 4HAYAKAWA T, HADDAD W M, HOVAKIMYAN N. Neural network adaptive control for a class of nonlinear uncertain dynami- cal sys-tems with asymptotic stability guarantees[ J]. IEEE Trans- actions on Neural Networks, 2008, 19 (1) : 80-89.
  • 5HOVAKIMYAN N, YANG B J, CALISE A J. Adaptive output feedback control methodology applicable to non-minimum phase nonlinear systems[ J]. Automatic, 2006, 42 (4) : 513 - 522.
  • 6HAGA R, MATSUURA A, SUZUKI S. Neural network based a- daptive flight control using feedback error learning[ C]//Proceed- ings of AIAA Guidance, Navigation, and Control Conference and Exhibit, August 21 - 24, 2006, Keystone,USA. 2006 : 1 - 10.
  • 7YANG B J, CALISE A J. Adaptive control of a class of nonaffine systems using neural networks [ J]. IEEE Transactions on Neural Networks, 2007, 18 (4): 1149-1159.
  • 8SHIN Y, CALISE A J, MOTFER M A. Adaptive autopilot de- signs for an unmanned aerial vehicle[ C]// AIAA Guidance, Navigation, and Control Conference and Exhibit, August 15 - 18, 2005, San Francisco, USA. 2005 : 1 -20.
  • 9CALISE A J, LEE S, SHARMA M. Development of a reconfigu- table flight control law for a tailless aircraft[ J]. Journal of Guid- ance Control and Dynamics, 2001,24 (5) : 896 -902.
  • 10HOVAKIMYAN N, YANG B J, CALISE A J. An adaptive out- put feedback control methodology for non-minimum phase systems [ C ]//Proceedings of the 41 st IEEE Conference on Decision and Control, December 10 - 13, 2002, Las Vegas, USA. 2002 : 949 - 955.

二级参考文献64

  • 1邹晖,陈万春,殷兴良.自旋导弹的反馈线化控制器设计[J].弹箭与制导学报,2004,24(S2):228-230. 被引量:2
  • 2刘燕斌,陆宇平.非线性自适应控制在无尾飞控系统中的应用[J].航空学报,2006,27(5):903-907. 被引量:5
  • 3王辉,黄万伟.基于动态逆和神经网络的机动弹头姿态控制系统设计[J].航天控制,2007,25(3):13-16. 被引量:3
  • 4吴森堂,费玉华.飞行控制系统[M].北京:北京航空航天大学出版社,2006:258-262.
  • 5Bechlioulis C P, Rovithakis G A. Robust adaptive control of feedback linearizable MIMO nonlinear systems with prescribed performance[J].IEEE Trans. on Automatic Control, 2008,53(9) :2090 - 2098.
  • 6Yang C G, Zhai L F. Adaptive model rderence control of a class of MIMO discrete-time systems with compensation of nonparametric uncertainty[C]//Proc, of American Control Conference, 2008: 4111 - 4116.
  • 7Hovakimyan N, Yang B J, Calise A J. Adaptive output feedback control methodology applicable to non-minimum phase nonlinear systems[J]. Automatica, 2006,42(4) :513 - 522.
  • 8Kim N, Calise A J. Neural network based adaptive output feedback augmentation of existing controllers[J]. Aerospace ,Science and Technology 2008,12(3)248-255.
  • 9Haga R, Matsuura A, Suzuki S. Neural network based adaptive flight control using feedback error learning[C]//Proc, of AIAA Guidance, Navigation, and Control Conference, 2006 : 1 - 10.
  • 10Hayakawa T, Haddad W M, Hovakimyan N. Neural network adaptive control for a class of nonlinear uncertain dynamical systems with asymptotic stability guarantees[J]. IEEE Trans. on Neural Networks, 2008,19 (1) : 80 - 89.

共引文献15

同被引文献70

引证文献9

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部