期刊文献+

液压系统故障特征提取方法研究 被引量:5

FAULT FEATURE EXTRACTION OF HYDRAULIC SYSTEM
下载PDF
导出
摘要 针对液压系统故障特征不清楚、诊断特别困难的难题,提出利用EEMD分解与相关性分析相结合的液压系统故障特征提取方法。首先用EEMD分解液压故障信号得到一组IMF分量,从中筛选出与故障信号自身相关系数大的IMF分量作为一组故障的候选IMF分量集;再在故障信号的IMF分量中筛选出与正常信号相关系数小的IMF分量,作为另一组故障的候选IMF分量集;两组候选IMF分量集的交集确定原故障信号的主要故障特征IMF分量,作自功率谱分析即可得到所提取IMF分量包含主要故障特征频率,并通过所提取IMF分量与正常信号的互功率谱验证特征提取的正确性。用该方法准确提取出液压实验台泄漏故障特征IMF分量以及故障特征频率。 Aiming at the problem that the fault feature of hydraulic system is not clear and difficult to diagnosis, a feature extraction method of faults is proposed in this paper which combines EEMD with correlation analysis. First, a group of IMF components of hydraulic fault signal was obtained by EEMD. Screened the IMF components strongly correlated with fault signal as a group of faults' candidate IMF component set. Then screened the IMF components little correlated with normal signal as another group of faults' candidate IMF component set. The intersection of two candidate IMF component sets were the main fault features of the original fault signals of IMF components. The main fault characteristic frequency of fault signal could be got by the spectrum analysis. Then use the cross-power spectrum of fault IMF component and normal signal to prove the validity of the feature extraction. The fault feature IMF components and fault frequency of hydraulic system leakage fault of the hydraulic simulator are extracted in this paper.
出处 《机械强度》 CAS CSCD 北大核心 2015年第3期408-412,共5页 Journal of Mechanical Strength
基金 国家自然科学基金项目(51175511)资助~~
关键词 液压故障 EEMD 相关系数 特征提取 Hydraulic fault EEMD Correlation coefficient Feature extraction
  • 相关文献

参考文献10

二级参考文献139

共引文献371

同被引文献57

  • 1李新淼.基于工程机械液压系统故障分析研究[J].轻工科技,2020,0(3):38-39. 被引量:6
  • 2张兆德,王德禹.基于模态参数的海洋平台损伤检测[J].振动与冲击,2004,23(3):5-10. 被引量:17
  • 3于德介,陈淼峰,程军圣,杨宇.一种基于经验模式分解与支持向量机的转子故障诊断方法[J].中国电机工程学报,2006,26(16):162-167. 被引量:45
  • 4丁幼亮,李爱群,姚晓征.动载测试与小波分析在桥梁结构损伤诊断中的联合应用[J].振动工程学报,2006,19(4):499-504. 被引量:7
  • 5Z Peng, P W Tse, F Chu. A comparison study of improved Hilbert- Huang transform and wavelet transform: application to fault for rolling bearing[J]. Mech. Syst. Signal Process, 19(5) : 974-988.
  • 6Xiang Gong, Wei Qiao. Beating Fault Diagnosis for Direct-Drive Wind Turbines via Current-Demodulated Signals [ J ]. IEEE transactions on industrial electronics, 2013, 60(8) : 3419-3427.
  • 7Jinglong Chen, Zipeng Li, Jun Pan, et al. Wavelet transform based on inner product in fault diagnosis of rotating machinery: A review [ J]. Mechanical Systems and Signal Processing, 2016,70: 1-35.
  • 8Norder E. Huang, Zheng Shen, Steven R. Long. The Empirical model decomposition and Hilbert spectrum for nonlinear and non- stationary time series analysis[ J]. Proceedings of the Royal Society, London, 1998, 454(A) :903-995.
  • 9Liu Mingliang, Wangkeqi, Sun laijun, et al. Applying empirical mode decomposition (EMD) and entropy to diagnose circuit breaker faults [ J ]. International Journal for Light and Electron Optics, 2015, 126(20) : 2338-2342.
  • 10Qi K Y, He Z J, Zi Y Y. Cosine Window-Based Boundary Processing Methord for Emd and Its Application in Rubbing Fault Diagnosis[ J ]. Mechanical Systems and Signal Processing, 2007, 21 : 2750-2760.

引证文献5

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部