期刊文献+

热剥离温度对石墨烯结构及电性能的影响 被引量:3

Influence of Thermal Exfoliation Temperature on Structure and Capacitance Properties of Graphene
下载PDF
导出
摘要 以天然石墨为原料,采用Hummers法制备氧化石墨(GO),再在200~700℃进行热还原,制备石墨烯.采用SEM、XRD和比表面积仪测试分析样品的微观结构和比表面积;并用恒流充放电测试仪测试样品的电容性能.研究表明:所得石墨烯具有片层结构,层间距为0.3783~0.3873nm,晶粒大小为2.030~3.359nm,层数均为5~9层;随着热还原温度的升高,石墨烯的层间距、晶粒大小和层数均逐渐减小,而比表面积逐渐增大.随着温度的升高,比电容先升高后降低,循环性能一直增加,400℃热还原的石墨烯首次放电比电容为318.6F/g,经过500次循环后容量保持率为54%. The graphene was obtained from flake graphite by Hummers method and a subsequent thermal exfo- liation and reduction at 200-700 ℃. The microstructure and specific surface area of the sample were analyzed using SEM, XRD and specific surface area test. The capacitive performance was tested by constant current charge-discharge set. The results shows: graphene has layered structure, the layer spacing of graphene is about 0. 3783-0. 3873 nrn, the grain size of graphene is about 2. 030-3. 359 nm, the number of layers is 5-9. With the increase of thermal re- duction temperature, the layer spacing of graphene, the grain size of graphene and the number of layers are gradually reduced, and the specific surface area of graphene rises gradually. With the increase of temperature, specific capaci- tance of graphene increases first and then decreases, and cyclic performance increases--the initial discharge specific ca- pacitance of the graphene is 318. 6 F/g when thermal reduction temperature is 400 ℃ and the capacity remain is about 54% after 500 cycles.
出处 《材料导报》 EI CAS CSCD 北大核心 2015年第10期22-25,46,共5页 Materials Reports
基金 国家自然科学基金(51274119)
关键词 石墨烯 比电容 热处理 比表面积 graphene, specific capacitance, heat treatment, specific surface area
  • 相关文献

参考文献17

  • 1陈日雄,于淑会,孙蓉,赵玉宝.超级电容器用石墨烯的制备与性能研究[J].化工新型材料,2012,40(6):66-68. 被引量:6
  • 2Schniepp H C, Li J L, Mcallister M J, et al. Functionalized single graphene sheets derived from splitting graphite oxide [J]. J Phys Chem B, 2006,110(17) : 8535.
  • 3Zhu Y, Murali S, Stoller M D, et al. Microwave assisted exfoliation and reduction of graphite oxide for ultracapacitors [J]. Carbon,2010,48(7) :2118.
  • 4Zhao W, Fang M, Wu F, et al. Preparation of graphene by exfoliation of graphite using wet ball milling [J]. J Mater Chem, 2010,20(28) : 5817.
  • 5Chen W, Yan L, Bangal P R. Preparation of graphene by the rapid and mild thermal reduction of graphene oxide in- duced by microwaves [J]. Carbon, 2010,48(4) : 1146.
  • 6Wu Z S, Ren W, Gao L, et al. Synthesis of high-quality graphene with a pre-determined number of layers [J]. Car- bon,2009,47(2) :493.
  • 7Stankovich S, Dikin D A, Piner R D, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfolia- ted graphite oxide [J]. Carbon, 2007,45(7) : 1558.
  • 8Shinde D B, Debgupta J, Kushwaha A, et al. Electrochemi- cal unzipping of multi-walled carbon nanotubes for facile synthesis of high-quality graphene nanoribbons[J]. J Am Chem Soc, 2011,133(12) : 4168.
  • 9Li X, Magnuson C W, et al. Large-area graphene single crystals grown by low pressure chemical vapor deposition of methane on coppe [J]. J Am Chem Soc,2011,133(9) :2816.
  • 10Wu Z S, Ren W, et al. Synthesis of high-quality graphene with a predetermined number of layers[J]. Carbon, 2009,47 (2):493.

二级参考文献84

  • 1李晶,赖延清,刘业翔.超级电容器碳电极材料的制备及性能[J].电池,2006,36(5):332-334. 被引量:5
  • 2NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomicallythin carbon films [J]. Science, 2004, 306: 666-669.
  • 3GEIM A K, NOVOSELOV K S. The rise of graphene [J]. Nature Materials, 2007, 6(3): 183-191.
  • 4NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Two-dimensional gas of massless dirac fermions in graphene [J]. Nature, 2005, 438: 197-200.
  • 5SEYLLER T, BOSTWICK A, EMTSEV K V, et al. Epitaxial graphene: a new material[J]. Phys Stat Sol (b), 2008, 245(7): 1436-1446.
  • 6CAI W, PINER R D, STADERMANN F J, et al. Synthesis and solid-state NMR structural characterization of ^13C-labeled graphite oxide [J]. Science, 2008, 321: 1815-1817.
  • 7MCALLISTER M J, LIO J L, ADAMSON D H, et al. Single sheet functionalized graphene by oxidation and thermal expansion of graphite [J]. Chemistry of Materials, 2007, 19 (18): 4396-4404.
  • 8SI Y, SAMULSKI E T. Synthesis of water soluble graphene [J]. Nano Letters, 2008, 8(6): 1679-1682.
  • 9DATO A, RADMILOVIC V, LEE Z, et al. Substrate-free gas-phase synthesis of graphene sheets[J]. Nano Letters, 2008, 8(7): 2012-2016.
  • 10SIDOROV A N, YAZADANPANAH M M, JALILIAN R, et al. Electrostatic deposition of graphene[J]. Nanotechnology, 2007, 18(13): 135301.

共引文献64

同被引文献23

  • 1Novoselov K S, Fal V I, Colombo L, et al. A roadmap for graphene[J]. Nature, 2012, 490(7419): 192-200.
  • 2Ning G, Fan Z, Wang G, et al. Gram-scale synthesis of nanomesh graphene with high surface area and its application in supercapacitor electrodes[J]. Chemical Communications, 2011, 47(21): 5976-5978.
  • 3Cao X, Shi Y, Shi W, et al. Preparation of novel 3D graphene networks for supercapacitor applications[J]. Small, 2011, 7(22): 3163-3168.
  • 4Akbi H, Yu L, Wang B, et al. Effect of reducing system on capacitive behavior of reduced graphene oxide film: Application for supercapacitor[J]. J Solid State Chem, 2015, 221 : 338-344.
  • 5Xian L, Xiong X, Zou J. Rapid microwave irradiation fast preparation and characterization of few-layer graphenes[J]. Nonferrous Met Soc China, 2014, 24(1): 177-183.
  • 6Raeeiehini R, Varzi A, Passerini S, et al. The role of graphene for electrochemical energy storage[J]. Nature materials, 2015, 14(3): 271- 279.
  • 7王灿,王艳莉,詹亮,杨光智,杨俊和,乔文明,凌立成.微波辐照液相法合成石墨烯[J].无机材料学报,2012,27(7):769-774. 被引量:12
  • 8张艳锋,高腾,张玉,刘忠范.金属衬底上石墨烯的控制生长和微观形貌的STM表征[J].物理化学学报,2012,28(10):2456-2464. 被引量:6
  • 9刘晓文,黄雪梅,华燕莉,赵皇,高海青.热膨胀剥离法制备石墨烯及其表征[J].非金属矿,2013,36(2):23-25. 被引量:10
  • 10葛雯,吕斌.Cu箔衬底上石墨烯纳米结构制备[J].材料科学与工程学报,2013,31(4):489-494. 被引量:14

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部