期刊文献+

社交网络中基于信任的推荐算法 被引量:11

Recommendation Algorithm Based on Trust in Social Network
下载PDF
导出
摘要 推荐系统作为解决信息过载问题的关键技术,已经引起了国内外研究学者的广泛关注.迄今为止,业界最广受好评的是协同过滤推荐技术.但由于其本身存在着数据稀疏、冷启动等固有问题,而难以应对膨胀的社会网络这一应用场景.本文针对推荐系统所面临的挑战,构建合适的动态信任传递模型,所设计的基于信任的推荐算法是对稀疏性、冷启动等问题的有效解决方案,且对恶意攻击具备一定的抵抗能力.最后在真实社交网络数据中对所设计的算法进行实现,并与传统推荐算法做实验对比,实验结果表明算法相比协同过滤算法在准确性和覆盖率上表现更好,且算法具备的分布式特性在复杂社会网络与大数据环境下实现了推荐实时性的要求. As an important technologyto solve the information overloaded problem, recommender system has gained more and more at- tention from both domestic and internationalscholars. So far, the best recommender system of industry uses the collaborative filtering recommendation technology. Collaborative filtering algorithm itself, however, has inherent problems, such as data sparsity, cold start. Hence, it is difficult for a simple recommendation mechanism based on traditional collaborative filtering algorithm to deal with the ex- pansion of the social network as the scenario. I builds appropriate dynamic trust modeland design an efficient distributed recommenda- tion algorithm, which is a good solution to the data sparsity and cold-start issues and anti-attacking. In the last, I implement the algo- rithm and experiment in the real social network data sets, and compared with the traditional recommendation algorithm. It turned out to better in accuracy and coverage, and the distributed manner fits the real-time requirement with the background of complex social net- work and big data.
出处 《小型微型计算机系统》 CSCD 北大核心 2015年第6期1165-1170,共6页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(61070226)资助
关键词 社交网络 推荐算法 信任 抗攻击性 online social network recommendation mechanism trust anti-attacking
  • 相关文献

参考文献1

二级参考文献4

  • 1O'Donovan J, Smyth B. Trust in Recommender Systems[C]//Proc. of IUI'05. San Diego, California, USA: [s. n.],2005: 167-174.
  • 2Massa P, Bhattacharjee B. Using Trust in Recommender Systems: An Experimental Analysis[C]//Proc. of the 2nd International Conference on Trust Management. Oxford, UK: [s. n.], 2004: 104- 110.
  • 3Goldberg D, Nichols D, Oki B M, et al. Using Collaborative Filtering to Weave an Information Tapestry[J]. Communications of the ACM, 1992, 35(12): 61-70.
  • 4Herlocker J L, Konstan J A, Terveen L G, et al. Evaluatin Collaborative Filtering Recommender Systems[J]. ACM Transactions on Information Systems, 2004, 22(1): 5-53.

共引文献16

同被引文献75

  • 1Massa P, Bhattacharjee B. Using trust in recommender systems: an experimental analysis[ C ]//Proc of the 2nd International Conference on Trust Management. Berlin:Springer,2004:221-235.
  • 2Massa P, Avesani P. Trust-aware recommender systems [ C ]//Proc of ACM Conference on Recommender Systems. New York:ACM Press, 2007 : 17- 24.
  • 3Golbeck J. Personalizing applications through integration of inferred trust values in semantic Web-based social networks [ C ]//Proc of the 4th International Semantic Web Conference. 2005:30.
  • 4Jamali M, Ester M. TrustWalker: a random walk model for combining trust-based and item-based recommendation [ C ]//Proc of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York : ACM Press,2009:397-406.
  • 5O' Donovan J, Smyth B. Trust in recommender systems[ C]//Proc of the lOth International Conference on Intelligent User Interfaces. New York : ACM Press,2005 : 167-174.
  • 6Guo Guibing. Integrating trust and similarity to ameliorate the data sparsity and cold start for recommender systems [ C ]//Proc of the 7th ACM Conference on Recommender Systems. New York:ACM Press, 2013:451-454.
  • 7Guo Guibing, Zhang Jie, Thalmann D, et al. From ratings to trust: an empirical study of implicit trust in recommender systems [ C ]// Proc of the 29th Annual ACM Symposium on Applied Computing. NewYork : ACM Press ,2014:248-253.
  • 8Bhuiyan T, Xu Yue, Jcsang A, et al. Developing trust networks based on user tagging information for recommendation making [ C ]// Proc of the 11 th International Conference on Web Information Systems Engineering. Berlin : Springer,2010:357- 364.
  • 9Mnih A, Salakhutdinov R. Probabilistic matrix factorization [ C ]// Advances in Neural Information Processing Systems. 2007: 1257- 1264.
  • 10Salakhutdinov R, Mnih A. Bayesian probabilistic matrix factorization using Markov chain Monte Carlo [ C ]//Proc of the 25 th International Conference on Machine Learning. New York:ACM Press,2008:880- 887.

引证文献11

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部