期刊文献+

基于核心链路的重叠社区发现算法

Core Link-based Overlapping Community Detection Algorithm in Social Networks
下载PDF
导出
摘要 针对当前的社区发现算法难以发现网络中重叠度较高的社区结构的问题,提出一种基于核心链路的重叠社区发现算法.相较于当前的基于节点的重叠社区发现算法,该算法从链路的角度出发,通过选取核心链路,并根据链路影响力的强弱不断吸引外层链路进而形成链路社区结构;再将链路社区转化为节点社区,经过节点社区调整后,得到全局最优的重叠社区结构.该算法是一种无监督算法,无需输入额外参数.将该算法分别应用于计算机生成网络和真实的社会网络,实验结果表明,相较于其它算法,本文所提算法能够更好地发现重叠度较高的社区结构. For the existing community detection algorithms are difficult to detect high overlapping community structures in the complex networks,this paper proposes a core link-based overlapping community detection algorithm. Compared with conventional algorithms based on node clustering,the proposed algorithm starts from the perspective of the link. First,a core link is detected. Then we utilize it to attract links in the outer space to join in the community which contains the core link. In the end,we transform link communities to node communities. After adjusting the node communities,we can get the global optimal overlapping community structures. The proposed algorithm is an unsupervised algorithm,without inputting additional parameters. Experiments on both artificial networks and real networks show that the proposed algorithm can achieve better efficiency on detecting high overlapping community structures.
出处 《小型微型计算机系统》 CSCD 北大核心 2015年第6期1225-1229,共5页 Journal of Chinese Computer Systems
基金 国家"八六三"高技术研究发展计划项目(2011AA010603 2011AA010605)资助
关键词 社区发现 重叠社区 链路社区 链路影响力 局部算法 community detection overlapping community link community link influence local algorithm
  • 相关文献

参考文献3

二级参考文献46

  • 1解(亻刍),汪小帆.复杂网络中的社团结构分析算法研究综述[J].复杂系统与复杂性科学,2005,2(3):1-12. 被引量:86
  • 2王林,戴冠中.复杂网络中的社区发现——理论与应用[J].科技导报,2005,23(8):62-66. 被引量:50
  • 3B W Kemighan, S Lin. An efficient heuristic procedure for par- titioning graphs I J]. The Bell system technical journal, 1970,49 (1) :291 - 307.
  • 4M Belkin, P Niyogi. Laplacian eigenmaps and stxtral tech- niques for embedding and clustering I A]. Advances in Neural Information Prcr_essing Systems I C ]. Vancouver, Canada: M IT Press,2001,14:585 - 591.
  • 5S White, P Smyth. A spectral clustering approach to finding communities in graphs [ A. Kamath C,Gotximan A,eds.Pm- ceedings of the 5th SIAM International Conference on Data Mining [ C]. Philadelphia: SIAM, 2005.76 - 84.
  • 6F Wu, B A Huberman. lmding communities in linear time: a physics approach I J ]. The European Physical Journal B-Con- densed Matter and Complex Systems, 2004,38 (2) : 331 - 338.
  • 7H Zhou. Distance, Dissimilarity index, and network community structure [ J] .Physical Review E,2003,67(6) :061901.
  • 8P Ports, M Latapy. Computing communities in large networks using random walks I A]. Proceedings of Computer and Infor- marion Sciences,-ISCIS 2005 [ C ]. Berlin, Heidelberg: SpringerVerlag, 2005,3733 ( 31 ) : 284 - 293.
  • 9M Girvan, M E J Newman. Community slructttre in social and biological networks [ J]. Proceedings of National Academy of Science of the United States of America, 2002, 99:7821 - 7826.
  • 10M E J Newman,M Girvan. Finding and evaluating community structure in networks [ J ]. Physical Review E, 2004, 69: 026113.

共引文献113

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部