摘要
针对当前的社区发现算法难以发现网络中重叠度较高的社区结构的问题,提出一种基于核心链路的重叠社区发现算法.相较于当前的基于节点的重叠社区发现算法,该算法从链路的角度出发,通过选取核心链路,并根据链路影响力的强弱不断吸引外层链路进而形成链路社区结构;再将链路社区转化为节点社区,经过节点社区调整后,得到全局最优的重叠社区结构.该算法是一种无监督算法,无需输入额外参数.将该算法分别应用于计算机生成网络和真实的社会网络,实验结果表明,相较于其它算法,本文所提算法能够更好地发现重叠度较高的社区结构.
For the existing community detection algorithms are difficult to detect high overlapping community structures in the complex networks,this paper proposes a core link-based overlapping community detection algorithm. Compared with conventional algorithms based on node clustering,the proposed algorithm starts from the perspective of the link. First,a core link is detected. Then we utilize it to attract links in the outer space to join in the community which contains the core link. In the end,we transform link communities to node communities. After adjusting the node communities,we can get the global optimal overlapping community structures. The proposed algorithm is an unsupervised algorithm,without inputting additional parameters. Experiments on both artificial networks and real networks show that the proposed algorithm can achieve better efficiency on detecting high overlapping community structures.
出处
《小型微型计算机系统》
CSCD
北大核心
2015年第6期1225-1229,共5页
Journal of Chinese Computer Systems
基金
国家"八六三"高技术研究发展计划项目(2011AA010603
2011AA010605)资助
关键词
社区发现
重叠社区
链路社区
链路影响力
局部算法
community detection
overlapping community
link community
link influence
local algorithm