期刊文献+

基于因果影响独立模型的贝叶斯网络参数学习 被引量:5

Parameters learning of Bayesian networks based on independence of causal influence model
原文传递
导出
摘要 基于因果影响独立模型及其中形成的特定上下文独立关系,提出一种适于样本学习的贝叶斯网络参数学习算法.该算法在对局部概率模型降维分解的基础上,通过单父节点条件下的子节点概率分布来合成局部结构的条件概率分布,参数定义复杂度较低且能较好地处理稀疏结构样本集.实验结果表明,该算法与标准最大似然估计算法相比,能充分利用样本信息,具有较好的学习精度. Based on the independence of the causal influence model and the context-specific independent relations arising in the model, a parameters learning algorithm of Bayesian networks suiting for sample learning is proposed. Through decomposing and dimension-reducing the local probability model, the algorithm can synthesize the conditional probability distribution of the local structure with the probability distribution of the child nodes under the single parent node. The algorithm has low parameter-defining complexity and can better deal with the sparse structure sample set. Compared with the standard maximum likelihood estimation algorithm, the experimental results show that the proposed algorithm can fully extract the information from sample data and has higher learning accuracy.
作者 肖蒙 张友鹏
出处 《控制与决策》 EI CSCD 北大核心 2015年第6期1007-1013,共7页 Control and Decision
基金 铁道部科技研究开发计划重点课题(2012X003-B) 甘肃省自然科学基金项目(1112RJZA040)
关键词 贝叶斯网络 因果影响独立 样本集 参数学习 Bayesian networks independence of causal influence sample set parameters learning
  • 相关文献

参考文献15

  • 1Pearl J. Probabilistic reasoning in intelligent systems: Networks of plausible inference[C]. Networks of Plausible Inference. San Francisco: Morgan Kaufmann, 1988: 383- 408.
  • 2Zhang N L, Poole D. Exploiting causal independence in Bayesian network inference[J]. J of Artificial Intelligence Research, 1996, 5(7): 301-328.
  • 3张宏毅,王立威,陈瑜希.概率图模型研究进展综述[J].软件学报,2013,24(11):2476-2497. 被引量:30
  • 4Heckerman D. Causal independence for knowledge acquisition and inference[C]. Proc of the 9th Conf on Uncertainty in Artificial Intelligence. San Mateo: Morgan Kaufmann Publishers, 1993: 122-127.
  • 5Yang S, Natarajan S. Knowledge intensive learning: Combining qualitative constraints with causal independence for parameter learning in probabilistic models[C]. Machine Learning and Knowledge Discovery in Databases. Berlin Heidelberg: Springer, 2013: 580-595.
  • 6Vomlel J, Tichavsky P. Computationally efficient probabilistic inference with noisy threshold models based on a CP tensor decomposition[C]. Proc of the 6th European Workshop on Probabilistic Graphical Models(PGM 2012). Granada, 2012: 355-362.
  • 7D'Ambrosio B. Symbolic probabilistic inference in large BN20 networks[C]. Proc of the 10th Conf on Uncertainty in Artificial Intelligence. San Mateo: Morgan Kaufmann Publishers, 1994: 128-135.
  • 8Li W, Poupart P, van Beek P. Exploiting structure in weighted model counting approaches to probabilistic inference[J]. J of Artificial Intelligence Research, 2011, 40(1): 729-765.
  • 9Pradhan M, Provan G, Middleton B, et al. Knowledge engineering for large belief networks[C]. Proc of the 10th Conf on Uncertainty in Artificial Intelligence. San Mateo: Morgan Kaufmann Publishers, 1994: 484-490.
  • 10Luque M, Dfez F J. Variable elimination for influence diagrams with super-value nodes[J]. Int J of Approximate Reasoning, 2010, 51(6): 615-631.

二级参考文献38

  • 1Roller D, Friedman N. Probabilistic Graphical Models: Principles and Techniques. MIT Press, 2009.
  • 2Gibbs JW. Elementary principles in Statistical Mechanics: Developed with Especial Reference to the Rational Foundation of Thermodynamics. Yale University Press, 1902.
  • 3Wright S. Systems of mating. I. the biometric relations between parent and offspring. Genetics, 1921,6(2): 111-123.
  • 4Croft DJ, Machol RE. Mathematical methods in medical diagnosis. Annals of Biomedical Engineering, 1974,(2):69-89. [doi: 10. 1007/BF02368087].
  • 5Gorry GA, Barnett G. Experience with a model of sequential diagnosis. Computers and Biomedical Research, 1968,l(5):490-507. [doi: 10.1016/0010-4809(68)90016-5].
  • 6Pearl J. Probabilistic Reasoning in Intelligent Systems: Networks of Plausble Inference. Morgan Kaufmann Publishers, 1988.
  • 7Lauritzen SL, Spiegelhalter DJ. Local computations with probabilities on graphical structures and their application to expert systems. Journal of the Royal Statistical Society. Series B (Methodological), 1988,50(2):157-224.
  • 8Heckerman DE, Horvitz EJ, Nathwani BN. Toward Normative Expert Systems: The Pathfinder Project. Stanford: Knowledge Systems Laboratory, Stanford University, 1990.
  • 9Kschischang FR, Frey BJ, Loeliger HA. Factor graphs and the sum-product algorithm. IEEE Trans, on Information Theory, 2001, 47(2):498-519. [doi: 10.1109/18.910572].
  • 10Winn J, Bishop CM. Variational message passing. Journal of Machine Learning Research, 2006,6(l):661-694.

共引文献29

同被引文献23

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部