期刊文献+

基于概率分布距离的多响应模型确认度量 被引量:3

Multiple response model validation metric based on distance of probability distribution
原文传递
导出
摘要 针对模型确认中的确认度量问题,构造实验观测数据经验概率分布的置信包络.通过计算其与模型响应概率分布之间距离的上/下确界,给出基于概率分布距离确认度量的置信区间.通过构造与实验观测数据有关的协方差矩阵,给出基于概率分布距离的多响应模型确认度量及其置信区间的求解方式.该度量利用了模型输出与实验观测的完整概率分布信息,并且考虑了各模型响应间的相关性.算例仿真结果表明其确认错误率低于现有的其他两种确认度量. For the metric for model validation, the confidence interval of the validation metric is presented by calculating the infimum and supremum of the distance between the empirical probability distribution of model response and the confidence interval of the experimental distribution. Besides, a multiple response validation metric based on the distance of probability distribution is proposed with its confidence interval by constructing experimental covariance matrix. The metric makes use of the whole data distribution and considers the correlation among multiple model responses. Simulation results show that the validation error rate of the proposed metric is lower than other two metrics.
作者 赵亮 杨战平
出处 《控制与决策》 EI CSCD 北大核心 2015年第6期1014-1020,共7页 Control and Decision
基金 中国工程物理研究院科学技术发展基金项目(2012B0403058) 十二五行业预研项目(426010401)
关键词 模型确认 概率分布距离 置信区间 多响应确认度量 model validation distance of probability distribution confidence interval multiple response validation metric
  • 相关文献

参考文献18

  • 1Trucano T G, Swiler L E Igusa T, et al. Calibration, vali- dation, and sensitivity analysis: What's what[J]. Reliability Engineering and System Safety, 2006, 91(10/11): 1331- 1357.
  • 2Box G E, Draper N R. Empirical model-building and response surfaces[M]. Minnesota: John Wiley Ltd, 1987: 424.
  • 3Trucano T G, Easterling R G, Dowding K L, et al. Description of the Sandia validation metrics project[R]. Albuquerque: Sandia National Laboratories, 2001.
  • 4Oberkampf W L, Trocano T G. Verification and validation benchmarks[R]. Albuquerque: Sandia National Laborato- ries, 2007.
  • 5Roy C J, Oberkampf W L. A comprehensive framework for verification, validation, and uncertainty quantification in scientific computing[J]. Computer Methods in Applied Mechanics and Engineering, 2011, 200(25-28): 2131- 2144.
  • 6Liu Y, Chen W, Arendt P, et al. Toward a better understand- ing of model validation metrics[J]. J of Mechanical Design, 2011, 133(7): 48-60.
  • 7Hills R G, Trucano T G. Statistical validation of engineer- ing and scientific models: Background[R]. Albuquerque: Sandia National Laboratories, 1999.
  • 8Hills R G, Trucano T G. Statistical validation of engineer- ing and scientific models: A maximum likelihood based metric[R]. Albuquerque: Sandia National Laboratories, 2002.
  • 9Buranathiti T, Cao J, Chen W, et al. Approaches for model validation: Methodology and illustration on a sheet metal flanging process[J]. J of Manufacturing Science and Engineering, 2006, 128(2): 588-597.
  • 10Rebba R, Mahadevan S. Validation of models with multivariate output[J]. Reliability Engineering and System Safety, 2006, 91(8): 861-871.

二级参考文献23

  • 1郭勤涛,张令弥,费庆国.结构动力学有限元模型修正的发展——模型确认[J].力学进展,2006,36(1):36-42. 被引量:70
  • 2邓小刚,宗文刚,张来平,高树椿,李超.计算流体力学中的验证与确认[J].力学进展,2007,37(2):279-288. 被引量:67
  • 3魏发远.复杂系统仿真模型的分层确认[J].计算机仿真,2007,24(7):82-85. 被引量:5
  • 4The American Society of Mechanical Engineers. ASME V&V 10 2006 Guide for verification & validation in computational solid meehanics[S]. New York.. ASME, 2006.
  • 5American Institute of Aeronautics and Astronautics. AIAA-G-077-1998 Guide for the verification and valida- tion of computational fluid dynamics simulations[S]. Re ston, VA: AIAA, 1998.
  • 6Oberkampf W L, Trucano T G. Verification and valida tion in computational fluid dynamics[J]. Progress in Aero- space Sciences, 2002, 38(3): 209-272.
  • 7National Aeronautics and Space Administration. NASA- STD-7009 Standard for models and simulations[S]. Washington, DC.- NASA, 2008.
  • 8The American Society of Mechanical Engineers. ASME V&V 20-2008 Standard for verification and validation in computational fluid dynamics and heat transfer[S]. New York: ASME, 2008.
  • 9Roy C J, Oberkampf W L. A complete framework for ve- rification, validation, and uncertainty quantification in sci- entific computing (invited)[R]. AIAA 2010 124, 2010.
  • 10Hills R G, Pilch M, Dowding K J, et al. Validation chal lenge workshop[J].Computer Methods in Applied Me chanics and Engineering, 2008, 197(29 32): 2375-2380.

共引文献12

同被引文献22

引证文献3

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部