期刊文献+

一种新的混合智能极限学习机 被引量:12

An improved hybrid intelligent extreme learning machine
原文传递
导出
摘要 提出一种基于差分进化(DE)和粒子群优化(PSO)的混合智能方法——DEPSO算法,并通过对10个典型函数进行测试,表明DEPSO算法具有良好的寻优性能.针对单隐层前向神经网络(SLFNs)提出一种改进的学习算法—DEPSO-ELM算法,即应用DEPSO算法优化SLFNs的隐层节点参数,采用极限学习算法(ELM)求取SLFNs的输出权值.将DEPSO-ELM算法应用于6个典型真实数据集的回归计算,并与DE-ELM、SaE-ELM算法相比,获得了更精确的计算结果.最后,将DEPSO-ELM算法应用于数控机床热误差的建模预测,获得了良好的预测效果. An improved hybrid intelligent algorithm based on differential evolution(DE) and particle swarm optimization (PSO) is proposed. The performance of DEPSO algorithm is verified by simulations on 10 benchmark functions. Then, an improved learning algorithm named DEPSO extreme learning machine(DEPSO-ELM) algorithm for single hidden layer feedforward networks(SLFNs) is proposed. In DEPSO-ELM, DEPSO is used to optimize the network hidden node parameters, and ELM is used to analytically determine the output weights. Simulation results of 6 real world datasets regression problems show that the DEPSO-ELM algorithm performs better than DE-ELM and SaE-ELM. Finally, the effectiveness of the DEPSO-ELM algorithm is verified in the prediction of NC machine tool thermal errors.
出处 《控制与决策》 EI CSCD 北大核心 2015年第6期1078-1084,共7页 Control and Decision
基金 广东省自然科学基金项目(S2011010001153) 中央高校基本科研业务费专项重点项目(2014ZZ0037)
关键词 粒子群优化算法 差分进化算法 极限学习机 混合 particle swarm optimization differential evolution extreme learning machine hybrid
  • 相关文献

参考文献17

  • 1刘德荣,李宏亮,王鼎.基于数据的自学习优化控制:研究进展与展望[J].自动化学报,2013,39(11):1858-1870. 被引量:22
  • 2Huang G B, Zhu Q Y, Siew C K. Extreme learning machine: Theory and applications[J]. Neurocomputing, 2006, 70(1): 489-501.
  • 3Qin A K, Huang V L, Suganthan P N. Differential evolution algorithm with strategy adaptation for global numerical optimization[J]. IEEE Trans on Evolutionary Computation, 2009, 13(2): 398-417.
  • 4Cao J, Lin Z, Huang G B. Self-adaptive evolutionary extreme learning machine[J]. Neural Processing Letters, 2012, 36(3): 285-305.
  • 5Zhu Q Y, Qin A K, Suganthan P N, et al. Evolutionary extreme learning machine[J]. Pattern Recognition, 2005, 38(10): 1759-1763.
  • 6Han F, Yao H F, Ling Q H. An improved evolutionary extreme learning machine based on particle swarm optimization[J]. Neurocomputing, 2013, 116: 87-93.
  • 7Miche Y, Sorjamaa A, Bas P, et al. OP-ELM: Optimally pruned extreme learning machine[J]. IEEE Trans on Neural Networks, 2010, 21(1): 158-162.
  • 8崔文华,刘晓冰,王伟,王介生.混合蛙跳算法研究综述[J].控制与决策,2012,27(4):481-486. 被引量:86
  • 9Storn R, Price K. Differential evolution- Asimple and efficient heuristics for global optimization over continuous spaces[J]. J of Global Optimization, 1997, 11(4): 341-359.
  • 10辛斌,陈杰.粒子群优化与差分进化混合算法的综述与分类[J].系统科学与数学,2011,31(9):1130-1150. 被引量:17

二级参考文献53

共引文献146

同被引文献126

引证文献12

二级引证文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部