期刊文献+

最坏分离的联合分辨率判别分析 被引量:10

Worst-Separated Couple-Resolution Discriminant Analysis
下载PDF
导出
摘要 现实中,常需辨识低分辨率(low-resolution,简称LR)图像(如监控系统所捕捉的人脸),但相比通常的高(high-resolution,简称HR)或超(super-resolution,简称SR)分辨率图像而言,其含有相对较少的判别信息,致使通常的子空间学习算法,如结合主成分分析(principal components analysis,简称PCA)的线性判别分析(linear discriminant analysis,简称LDA)难以获得理想的识别效果.为了缓和该问题,最近所提出的联合判别分析(如SDA)借助与低分辨率相配对的高分辨率图像辅助设计LR图像分类器.在SDA的实现中,其采用了类似LDA的平均散度定义,使SDA遗传了LDA在投影时难以使相对靠近的类充分分离的问题.为了克服该不足,提出了针对LR图像识别的最坏分离的联合分辨率判别分析(worst-separated couple-resolution discriminant analysis,简称WSCR),从而使:(1)LR和HR投影到同一低维子空间;(2)投影后的最小类间隔最大化.实验结果表明:与SDA相比,WSCR更适用于低分辨率的图像识别. Low-resolution is an important issue when handling real world image recognition problems. The performance of traditional recognition algorithms, e.g. LDA/PCA, usually drops drastically due to the loss of discriminant information compared to those for high-resolution or super-resolution images. In order to solve this problem, many methods have been proposed in recent years based on coupled projections, i.e. learning two sets of different projections, one for high-resolution images and one for low-resolution images. For example, SDA (simultaneous discriminant analysis) obtains projections by maximizing the average between-class scatter while minimizing the average within-class scatters. Like LDA, SDA cannot separate projected classes, especially for those that are closer to each other. In this paper, a novel discriminant analysis method is proposed to achieve the optimal projections by maximizing the minimum distance between pair-wise classes. Experiments on several image datasets verify the efficiency of the presented methods.
出处 《软件学报》 EI CSCD 北大核心 2015年第6期1386-1394,共9页 Journal of Software
基金 国家自然科学基金(61170151) 教育部高等学校博士学科点专项科研基金(20133218110032)
关键词 联合分辨率 线性判别分析 最坏分离 平均紧性 couple-resolution linear discriminant analysis the worst-separation the average-compactness
  • 相关文献

参考文献23

  • 1Zou WW, Yen PC. Very low resolution face recognition problem. IEEE Trans. on Image Processing, 2012,21 (1):327-340. [doi: 10. 1109/TIP.2011.2162423].
  • 2Ahonen T, Rahtu E, Ojansivu V, Heikkila J. Recognition of blurred faces using local phase Conf. on Pattern Recognition (ICPR). 2008. [doi: 10.1109/ICPR.2008.4761847].
  • 3Lei Z, Ahonen T, Pietikainen M, Li SZ. Local frequency descriptor for low-resolution face Conf. on Automatic Face and Gesture Recognition. 2011. [doi: 10.1109/FG.2011.5771391].
  • 4quantization. In: Proc. of the 19th Int'l recognition. In: Proc. of the IEEE Int'l Freeman W, Pasztor E, Carmichael O. Learning low-level vision. Int'l Journal of Computer Vision, 2000,40:25-47. [doi: 10. 1023/A: 1026501619075].
  • 5Chang H, Yeung D, Xiong Y. Super-Resolution through neighbor embedding. In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition. 2004. 275-282. [doi: 10.1109/CVPR.2004.1315043 ].
  • 6Roweis S, Saul L. Nonlinear dimensionality reduction by locally linear embedding. Science, 2000,290:2323-2326. [doi: 10.1126/ science.290.5500.2323].
  • 7Hennings-Yeomans P, Baker S, Kumar B. Simultaneous super-resolution and feature extraction for recognition of low-resolution faces. In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition. 2008.1-8. [doi: 10.1109/CVPR.2008.4587810].
  • 8Yah S, Xu D, Zhang B, Zhang HJ, Yang Q, Lin S. Graph embedding and extensions: A general framework for dimensionality reduction. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2007,29:40-51. [doi: 10.1109/TPAMI.2007.250598].
  • 9Huang H, He H. Super-Resolution method for face recognition using nonlinear mappings on coherent features. IEEE Trans. on Neural Networks, 2011,22(1): 121-130. [doi: 10.1109/TNN.2010.2089470].
  • 10Li B, Chang H, Shan S, Chen X. Low-Resolution face recognition via coupled locality preserving mappings. Signal Processing Letters, IEEE, 2010,17(1 ):20-23. [doi: 10.1109/LSP.2009.2031705].

二级参考文献15

  • 1Ouwerkerk J V. Image super-resolution survey [J]. Image and Vision Computing, 2006, 24(10): 1039-1052.
  • 2I.in F, Fookes C, Chandran V, et al. Super resolved faces for improved face recognition from surveillance video [C]// Proc of Advances in Biometrics. Heidelberg: Springer, 2007: 1-10.
  • 3Wang Xiaogang, Tang Xiaoou. Hallucinating face by eigentransformation [J]. IEEE Trans on System, Man, Cybernetics, Part C: Applications and Reviews, 2005, 35 (3) : 425-434.
  • 4Wheeler F, Liu Xiaoming, Tu P. Multi frame super- resolution for face recognition [C] // Proe of IEEE Conf on Biometrics: Theory, Applications Systems. Piscataway, NJ: IEEE, 2007: 1-6.
  • 5Hennings-Yeomans P, Baker S, Kumar B. Simultaneous superresolution and feature extraction for recognition of low resolution faces [C]// Proc of IEEE Conf on Computer Vision and Pattern Recognition. Los Alamitos, CA: IEEE Computer Society, 2008: 1-8.
  • 6Zhuang Liansheng, Wang Mengliao, Yu Wen, et al. Low- resolution face recognition via sparse representation of patches [C] // Proc of Int Conf on Image and Graphics. Los Alamitos, CA: IEEE Computer Society, 2009:200-204.
  • 7Li Bo, Chang Hong, Shan Shiguang. Low-resolution face recognition via coupled locality preserving mappings [J]. IEEE Signal Processing Letters, 2010, 17 (1): 20-23.
  • 8Hotelling H. Relations between two sets of variates [J]. Biometrika,1936, 28 (3/4): 321-377.
  • 9Huang Hua, He Huiting. Super-resolution method for face recognition using nonlinear mappings on coherent features[J]. IEEE Trans on Neural Networks, 2011, 22(1): 121- 180.
  • 10Sugiyama M, Ide T, Nakajima S. Semi supervised local Fisher discriminant analysis for dimensionality reduction [J]. Machine Learning, 2010, 78(1/2): 35-61.

共引文献18

同被引文献88

  • 1Renan A, Gundolf H , Manfred L, et al.. Comparing CUDA and OpenGL implementations for a Jacobi iteration[C]. IEEE, 2009 : 22-32.
  • 2Lin J, Chen Y. Design and implementation of Jacobi algorithms on GPU[C]. IEEE, 2010:448-450.
  • 3Zhang Z, Miao Q, Wang Y. CUDA-Based Jacobi's iterative method [C]. IEEE, 2009:259-262.
  • 4Chan T F, Shen J. Non-texture in painting by curva-true-driven difusions [J]. Journal of Visual Communication and Image Represen- tation, 2001, 12(4):436-449.
  • 5Roth S, Black M J .Fields of Experts [J]. International Journal of Computer Vision Computer, 2009,82(2):205-229.
  • 6Criminisi A, Perez P, Toyama K.Region filling and object removal by exemplar- based image inpainting [J]. IEEE Trans. Image Processing, 2004,9(13): 1200-1212.
  • 7Chan T F, Shen J, Zhou H M. Total variation wavelet imprinting [J]. Math Imaging Vision, 2006, 25(1) : 107-125.
  • 8S Porwal, S K Katiyar. Performance evaluation of various resam- piing techniques on IRS imagery [ C ]. 2014 Seventh International Conference on Contemporary Computing (IC3) , IEEE, 2014:489 - 494.
  • 9罗钧,王莲,侯艳.摄像机标定的棋盘格亚像素角点检测[J].重庆大学学报(自然科学版),2008,31(6):615-618. 被引量:15
  • 10汤永新,刘增良.软件可信性度量模型研究进展[J].计算机工程与应用,2010,46(27):12-16. 被引量:11

引证文献10

二级引证文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部