期刊文献+

梯度渐进回归树算法在电子商务品牌推荐中的应用 被引量:4

Gradient Boosting Regression Tree Algorithm and Application of E-commerce Brand Recommendation
下载PDF
导出
摘要 针对电子商务推荐系统中,互联网"信息过载"所造成的难以准确定位用户兴趣并提供准确品牌推荐的问题,通过深入挖掘电子商务网中的用户行为日志,抽取出能辨别出用户对商品品牌购买行为的多个特征,然后将这些特征融入到梯度渐进回归树算法中,建立用户兴趣偏好模型来提高推荐精度.实验结果表明,在数据稀疏的情况下,该算法仍能较好的识别出用户对品牌的偏好,并在推荐准确度方面较其他传统推荐和分类算法有明显的提高. In E-commerce recommendation system, "Information overload" on Internet has brought a tough problem, which is how to precisely position users' interest and provide users with accurate brand recommendation. To solve this problem, in this paper, many features which could describe the purchasing behavior of users are extracted by deeply mining large-scale of user behavior logs. A brand preference model was constructed by applying these features into Gradient Boosting Regression Tree algorithm, to improve accuracy of the recommendation algorithm. Experiment results show that, in condition of sparse data, algorithm in this paper can still fit brand preference of users very well, and has significantly improvement in accuracy compared with traditional recommendation and classification algorithm.
出处 《计算机系统应用》 2015年第6期114-120,共7页 Computer Systems & Applications
关键词 品牌推荐 梯度渐进回归树 行为日志分析 特征挖掘 brand recommendation gradient boosting regression tree behavior log analysis feature mining
  • 相关文献

参考文献14

  • 1Friedman JH. Greedy function approximation: a gardient boosting machine. Annal of Statistics, 2001, (29): 1189-1232.
  • 2章光明,刘晋,贾慧珣,李康.随机梯度boosting算法在代谢组学研究中的应用[J].中国卫生统计,2013,30(3):323-326. 被引量:6
  • 3Panagiotiss, Alexandrosn, Apstolosn, et al. Collaborative recommender system: combing effectiveness and efficiency. Expert Systems With Applications, 2007, 34(4): 2995-3013.
  • 4Sung-Shun W, Lin BS, Wen-Tien C. Using contextual Information and multidimensional approach for recommend- dation. Expert Systems With Applications, 2009, 36(2): 126[8]-1279.
  • 5Leungcw, Chansc, Chungf, et al. An empirical study of a cross-level association rule mining approach to cold-start recommendations. Knowledge-Based Systems, 2008, 21(7): 515-529.
  • 6Agrawal R, Imuekubsju R, Swami A. Mining association rules between sets of items in large databases. Proc. of ACM SIGMOD International Conference on Management of Data. New York. ACM Press. 1993. 207-216.
  • 7Han JW, Pei J, Yin YW, et al. Mining frequent patterns without candidate Generation: a frequent-pattern tree approach. Data Mining and Knowledge Discovery, 2004, 8(1): 53-87.
  • 8刘枚莲,刘同存,李小龙.基于用户兴趣特征提取的推荐算法研究[J].计算机应用研究,2011,28(5):1664-1667. 被引量:19
  • 9Liu DR, Shih YY. Hybrid approaches to product recommendation base on customer lifetime value and purchase preferences. Journal of Systems and Software, 2005, 77(2): 181-191.
  • 10扈中凯,郑小林,吴亚峰,陈德人.基于用户评论挖掘的产品推荐算法[J].浙江大学学报(工学版),2013,47(8):1475-1485. 被引量:29

二级参考文献65

  • 1邓爱林,左子叶,朱扬勇.基于项目聚类的协同过滤推荐算法[J].小型微型计算机系统,2004,25(9):1665-1670. 被引量:147
  • 2娄德成,姚天昉.汉语句子语义极性分析和观点抽取方法的研究[J].计算机应用,2006,26(11):2622-2625. 被引量:64
  • 3YEONG C,YOON C, SOUNG K. Mining changes in customer buying behaviour for collaborative recommendations [ J ]. Expert Systems with Applications,2004,28 ( 2 ) : 359- 369.
  • 4PANAGIOTIS S, ALEXANDROS N, APSTOLOS N,et al. Collaborative recommender system: combing effectiveness and efficiency [ J ]. Expert Systems with Applications,2007,34(4) :2995-3013.
  • 5WENG Sung-shun, LIN Bin-shan, CHEN Wen-tien. Using contextual information and multidimensional approach for recommendation [J]. Expert Systems with Applications,2009,36(2) :1268-1279.
  • 6LEUNG C W, CHAN S C, CHUNG F,et al. An empirical study of a cross-level association rule mining approach to cold-start recommendations[ J]. Knowledge-based Systems,2008,21 (7) :515-529.
  • 7LI Yu, LIU Lu, LI Xue-feng. A hybrid collaborative filtering method for multiple-interests and multiple-content recommendation in e-commerce [ J ]. Expert Systems with Applications, 2005,28 ( 1 ) : 67- 77.
  • 8HUANG Cheng-lung, HUANG Wei-liang. Handing sequential pattern decay : developing a two-stage collaborative recommender system [ J ]. Eletronic Commerce Research and Applications, 2008,8 ( 3 ) : 117-129.
  • 9LUIS M,JUAN M,JUAN F. A collaborative recommender system base on probabilistic inference from fuzzy observations[ J]. Fuzzy Sot and Systems,2008,159 ( 12 ) : 1554-1576.
  • 10HUANG Zan,ZENG D, CHEN H C. A comparison of collaborative-filtering recommendation algorithms for e-commerce[ J]. IEEE Intelligent Systems, 2007,22 (5) :68- 78.

共引文献196

同被引文献17

引证文献4

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部