期刊文献+

快速混合高斯模型的运动目标检测 被引量:2

Fast Gaussian Mixture Model of Moving Target Detection
下载PDF
导出
摘要 针对经典混合高斯模型算法在实际应用中计算量大实时性差,且对光线变化和运动物体速度敏感的缺点,提出一种改进的快速检测算法.通过选取合适的间距,先用帧间差分法提取出完整的运动区域和背景区域,只对前者进行混合高斯模型匹配,来降低计算量.对背景图像不同区域采用不同背景更新率,及时响应背景变化.最后引入一个光线突变参数,来预防光线突变给检测带来的干扰.通过实验,证明本算法在实时性,鲁棒性,稳定性等上有了很大的改善,能够很好的检测出运动目标. In this paper, we propose an improved fast detecting algorithm to solve the disadvantages which are the high computation, sensitive to light changes and the speed of moving object of the classical Gaussian mixture model. We extract the complete regions of the motion and the background by using frame different method of choosing the appropriate space. The algorithm reduces the amount of calculation because it just needs to calculate part of pixels. We use different background update rate in the different area of the background to respond the changes of the background timely. Finally, we introduce an environment mutation parameter to detect mutations. Through experiments, the algorithm has made a lot of improvement in the aspects of the iustantaneity, the robustness and the stability. The moving target can be detected very well.
出处 《计算机系统应用》 2015年第6期127-131,共5页 Computer Systems & Applications
关键词 混合高斯模型 运动目标检测 帧间差分法 背景更新率 光线突变 Gaussian mixture model moving target detection frame different method background update rate light mutation
  • 相关文献

参考文献10

  • 1Horn BK, Schunck BG. Determining optical flow. 1981Technical Symposium East. International Society for Optics and Photonics, 1981: 319-331.
  • 2Lipton AJ, Fujiyoshi H. Moving target classification and tracking from real-time video. Proc. IEEE Workshop on Applications of Computer. Princeton, NJ. 1998. 8-14.
  • 3Rymel J, Renno J, Greenhill D, et al. Adaptive eigenback- grounds for object detection. 2004International Conference on Image Processing(ICIP\'04). IEEE. 2004, 3. 1847-1850.
  • 4Wren CR, Azarbayejani A, Darrell T, et al. Pfinder: Real-time tracking of the human body. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1997, 19(7): 780-785.
  • 5Stauffer C, Grimson WEL. Adaptive background mixture models for real-time tracking. IEEE Computer Society Conference on Computer Vision and Pattern Recognition 1999. IEEE. 1999. 246-252.
  • 6Gupte S, Masoud O, Martin RFK, et al. Detection and classification of vehicles. IEEE Trans. on Intelligent Transportation Systems, 2002, 3(1): 37-47.
  • 7刘静,王玲.混合高斯模型背景法的一种改进算法[J].计算机工程与应用,2010,46(13):168-170. 被引量:55
  • 8金广智,石林锁,白向峰,滕明春.基于混合高斯模型的新型目标检测系统[J].计算机应用,2011,31(12):3360-3362. 被引量:11
  • 9Ren Y, Chua CS, Ho YK. Statistical background modeling for non-stationary camera. Pattern Recognition Letters, 2003, 24(1): 183-196.
  • 10栾胜利.基于改进的混合高斯模型的背景建模方法[J].指挥控制与仿真,2014,36(1):84-87. 被引量:3

二级参考文献26

  • 1代科学,李国辉,涂丹,袁见.监控视频运动目标检测减背景技术的研究现状和展望[J].中国图象图形学报,2006,11(7):919-927. 被引量:169
  • 2万缨,韩毅,卢汉清.运动目标检测算法的探讨[J].计算机仿真,2006,23(10):221-226. 被引量:121
  • 3吕国亮,赵曙光,赵俊.基于三帧差分和连通性检验的图像运动目标检测新方法[J].液晶与显示,2007,22(1):87-93. 被引量:36
  • 4Stauffer C,Grimson W.Learning patterns of activity using real-time tracking[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(8):747-757.
  • 5Haritaoglu I,Harwood D,Davis L S.W4:Real-time surveillance of people and their activities[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(8):809-830.
  • 6Leed S,Hull J,Erpl B.A Bayesian framework for Gaussian mixture background modeling[C]//Proceedings of IEEE Internatianal Conference on Image Processing,2003:973-976.
  • 7Hall D,Nascimento J,Ribeiro P,et al.Comparison of target detection algorithms using adaptive background models[C]//The 2nd Joint IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance,2005,10(15):113-120.
  • 8Stauffer C,Grirason W.Adaptive background mixture models for real time tracking[C]//Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition,1999:246-252.
  • 9FRIEDMAN N, RUSSELL S. Image segmentation in video sequences: A probabilistic approach [ C]// Proceedings of the 13th Annual Conference on Uncertainty in Artificial Intelligence. San Francisco: Morgan Kaufmann Publishers, 1997:175 - 181.
  • 10STAUFFER C, GRIMSON W E L. Adaptive background mixture models for real-time tracking[ C]// Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 1999:246 -252.

共引文献65

同被引文献18

引证文献2

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部