期刊文献+

分步筛选邻居的协同过滤改进算法 被引量:2

Collaborative Filtering Recommendation Algorithm with Step Screening Neighbors
下载PDF
导出
摘要 为了解决协同过滤算法用户邻居筛选的优化问题,提高推荐结果的准确性,提出了一种分步筛选邻居的协同过滤改进算法.该算法首先采用改进的Pearson系数法计算用户间的相似度,降序排列后,计算用户特征值,大于用户特征阈值的用户进入下一层筛选;然后选择对优先项目集有过评分的用户形成最终的邻居集;最后进行预测评分得到推荐.实验结果表明,该算法能够有效地获取用户最近邻居集,改善准确性,并且稳定性良好. To increase the accuracy of the neighbor screening in collaborative filtering algorithm, an improved system-collaborative filtering with step screening neighbors (SSN-CF)-is proposed in this paper. This algorithm firstly uses an improved Pearson method to compare the similarity between users. After arranging the data in descending order, the uses' characteristic value is calculated. Only those who surpass the threshold value are selected. Then the system gathers the users who graded the priority set to make up the final neighbor set. Finally the users' grades are estimated and recommendation is made. Experiments have shown that the algorithm can effectively get the most similar neighbor set of target uses. Meanwhile, it is tested that accuracy and stability is improved.
出处 《计算机系统应用》 2015年第6期132-137,共6页 Computer Systems & Applications
关键词 邻居筛选 用户特征 优先项目集 评分邻居优先 collaborative filtering neighbor screening users' characteristic prefer set rating neighbors' priority
  • 相关文献

参考文献9

  • 1蔺丰奇,刘益.信息过载问题研究述评[J].情报理论与实践,2007,30(5):710-714. 被引量:62
  • 2赵亮,胡乃静,张守志.个性化推荐算法设计[J].计算机研究与发展,2002,39(8):986-991. 被引量:140
  • 3Balabanovid M, Shoham Y. Content-based collaborative recommendation. Communications of the ACM, 1997, 40(3): 66-72.
  • 4索琪,卢涛.基于关联规则的电子商务推荐系统研究[J].哈尔滨师范大学自然科学学报,2005,21(2):50-53. 被引量:8
  • 5Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Trans. on Knowledge and Data Engineering, 2005, 17(6): 734-749.
  • 6傅鹤岗,彭晋.基于模范用户的改进协同过滤算法[J].计算机工程,2011,37(3):70-71. 被引量:7
  • 7Michael J, Andreas T, Robert L. Combining predictions for accurate recommender system. Proc. of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2010. 693-702.
  • 8沈健.电子商务的个性化协同过滤推荐算法研究硕士学位论.上海:上海交通大学,2013.
  • 9Bobadilla J, Hernando A, Ortega F, Bernal J. A framework for collaborative filtering recommender systems. Expert Systems with Applications, 2011, 38: 14609-14623.

二级参考文献38

  • 1张锋,常会友,衣杨.基于规则的电子商务推荐系统模型和实现[J].计算机集成制造系统,2004,10(8):898-902. 被引量:11
  • 2赵耀,薛贵荣.Web Service下的商品推荐系统的研究与实现[J].临沂师范学院学报,2003,25(6):131-134. 被引量:3
  • 3左孝陵,李为监,刘永才等.离散数学[M].上海:上海科学技术文献出版社,2003:280-286.
  • 4Goldberg D,Nichols D.Using Collaborative Filtering to Weave an Information Tapestry[J].Communications of the ACM,1992,35(12):61-70.
  • 5Hedocker J.Clutering Items for Collaborative Filtering[C]//Proceedings of the ACM SIGIR Workshop on Recommender Systems.[S.10.]:ACM Press,2002.
  • 6Hart Seng-Chee.RecTree:A Linear Collaborative Filtering Algorithm[D].British Columbia,Canada:Simon Fraser University,2000.
  • 7Davies D L,Bouldin D W.A Cluster Separation Measure[J].IEEE Trims.on Pattern Anal.and Machine Intell.,1979,1(4):224-227.
  • 8I Schafer, J. B. , Konstan, J. , and Riedl, J. , E-Commerce Recommendations Applications. Journal of Data Mining and Knowledge Discovery, January-April 2001, Vol 5, Issue 1-2,pp.115-153.
  • 9Schafer, J. B. , Konstan, J. , and Riedl, J. Recommender Systems in E-Commerce. In Proceedings of ACM E-Commerce 1999 conference. 1999.
  • 10Sarwar, B. , Karypis, G. , Konstan, J. , Analysis of Recommendation Algorithms for E-Commerce. ACM Conference on Electronic Commerce, 2000.

共引文献211

同被引文献17

引证文献2

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部