摘要
基于有效役龄和故障率函数对电力设备的多级检修方式进行建模,并从可靠性成本/效益角度对发输电系统多级计划检修周期进行协调优化研究。计及故障率随时间的增长效应,以电力设备检修导则中的计划检修等级定义为参照,建立考虑A级完全检修、C级不完全检修条件下的电力设备故障率模型;在此基础上建立系统可靠性指标、系统检修成本、停电成本、C级计划检修周期、A/C级检修周期比率之间的解析表达式。针对以系统检修成本与系统停电成本之和最小为目标的大规模混合整数非线性规划问题,提出融合灵敏度分析和前向/后向差分思想的电网多级计划检修协调优化启发式迭代算法。探讨检修恢复因子变化对电网计划检修优化的影响。RBTS、IEEE-RTS79系统验证了所提算法的有效性。
A model of multi-level maintenance mode for the electric power devices is built based on the effective age and failure rate function,and the coordination and optimization of power-grid preventive maintenance cycle in multi-level maintenance mode is researched from the cost-benefit ratio of generation- transmission system reliability. The failure rate model of electric power device is established for A-level perfect maintenance and C-level imperfect maintenance,which considers the failure rate growing along with the time and follows the preventive maintenance level definitions in the electric power device maintenance guide. The analytical expressions among the system reliability index,system maintenance cost,outage cost,C- level preventive maintenance cycle and A/C-level maintenance cycle ratio are established. A heuristic iterative algorithm based on the combination of sensitivity analysis and forward/backward differential is proposed to solve the large-scale mixed-integer nonlinear planning problem for the coordination and optimization of muhi-level preventive maintenance,which takes the minimum sum of system maintenance cost and outage cost as its objective. The impact of maintenance recovery factor on the optimization of system preventive maintenance is discussed. With RBTS and IEEE-RTS79 systems the effectiveness of the proposed algorithm is verified.
出处
《电力自动化设备》
EI
CSCD
北大核心
2015年第6期71-81,共11页
Electric Power Automation Equipment
基金
国家自然科学基金资助项目(50977094)
中央高校基本科研业务费专项资金资助项目(CDJZR11150012)
重庆市自然科学基金资助项目(CSTC2011BB6047)
输配电装备及系统安全与新技术国家重点实验室自主研究项目(2007DA10512711208)~~
关键词
不完全检修方式
计划检修
检修周期
模型
灵敏度
差分
优化
检修
可靠性
成本
imperfect preventive maintenance
preventive maintenance
maintenance cycle
models
sensitivity
differential
optimization
maintenance
reliability
costs