摘要
提出一种基于稀疏分解的l0构图法,通过稀疏分解系数矩阵得到图中邻接矩阵和边的权重。将l0构图法应用到局部全局一致性学习(Learning with Local and Global Consistency,LLGC)算法中,并通过K-均值聚类优化稀疏分解所需字典,以降低计算复杂度。在8个UCI数据集上的实验表明,与经典LLGC算法相比,新算法能在消耗时间不增加的情况下提高分类精度,提升算法性能。
Abstract. A graph construction method by the sparse representation is proposed in this paper. This method derives graph adjacency structure and the graph weights from coefficient matrix sim- ultaneously. The graph is introduced into Learning with Local and Global Consistency (LLGC) algorithm. The dictionary is optimized by K-means algorithm. Computing complexity can then be reduced and the performance of LLGC can be improved. Experimental results on UCI datasets in- dicate that the proposed algorithm can improve the precision of classification and maintain con- sumed time invariant. Therefore the performance of LLGC is improved.
出处
《西安邮电大学学报》
2015年第3期65-70,共6页
Journal of Xi’an University of Posts and Telecommunications
基金
公安部技术研究计划重点资助项目(2014JSYJA018)
陕西省教育厅专项科研计划资助项目(12JK0731)
关键词
稀疏分解
局部全局一致性学习
K-均值
sparse representation, learning with local and global consistency(LLGC), K-means