期刊文献+

基于稀疏分解的局部全局一致性学习算法 被引量:3

Learning with local and global consistency based on sparse representation
下载PDF
导出
摘要 提出一种基于稀疏分解的l0构图法,通过稀疏分解系数矩阵得到图中邻接矩阵和边的权重。将l0构图法应用到局部全局一致性学习(Learning with Local and Global Consistency,LLGC)算法中,并通过K-均值聚类优化稀疏分解所需字典,以降低计算复杂度。在8个UCI数据集上的实验表明,与经典LLGC算法相比,新算法能在消耗时间不增加的情况下提高分类精度,提升算法性能。 Abstract. A graph construction method by the sparse representation is proposed in this paper. This method derives graph adjacency structure and the graph weights from coefficient matrix sim- ultaneously. The graph is introduced into Learning with Local and Global Consistency (LLGC) algorithm. The dictionary is optimized by K-means algorithm. Computing complexity can then be reduced and the performance of LLGC can be improved. Experimental results on UCI datasets in- dicate that the proposed algorithm can improve the precision of classification and maintain con- sumed time invariant. Therefore the performance of LLGC is improved.
出处 《西安邮电大学学报》 2015年第3期65-70,共6页 Journal of Xi’an University of Posts and Telecommunications
基金 公安部技术研究计划重点资助项目(2014JSYJA018) 陕西省教育厅专项科研计划资助项目(12JK0731)
关键词 稀疏分解 局部全局一致性学习 K-均值 sparse representation, learning with local and global consistency(LLGC), K-means
  • 相关文献

参考文献19

  • 1Wang B,Spencer B,Ling C X,et al.Semi-supervised self-training for sentence subjectivity classification[J].Lecture Notes in Computer Science,2008,5032:344-355.
  • 2Chan J,Koprinska I,Poon J.Co-training with a single natural feature set applied to email classification[C]//Proceedings of IEEE/WIC/ACM International Conference on Web Intelligence.Beijing:IEEE Computer Society,2004:586-589.
  • 3Li Y Q,Guan C T,Joint feature re-extraction and classification using an iterative semi-supervised support vector machine algorithm[J].Machine Learning,2008,71(1):33-53.
  • 4Zha Z J,Mei T,Wang J D,et al.Graph-based semisupervised learning with multiple labels[J].Journal of Visual Communication and Image Representation,2009,20(2):97-103.
  • 5王雪松,张晓丽,程玉虎.一种简洁局部全局一致性学习[J].控制与决策,2011,26(11):1726-1730. 被引量:7
  • 6Blum A,Chawla S.Learning from labeled and unlabeled data using graph mincuts[C]//Proceedings of the 18th International Conference on Machine Learning.San Francisco:Morgan Kaufmann,2001:19-26.
  • 7Zhu X,Ghahramani Z,Lafferty J.Semi-supervised learning using Gaussian fields and harmonic functions[C]//The 20th International Conference on Machine Learning.Washington:American Association for Artificial Intelligence,2003:912-919.
  • 8Zhou D Y,Bousquet O,Lal T N,et al.Learning with local and global consistency[C]//Advances in Neural Information Processing Systems 16.MA Cambridge:MIT Press,2004:321-328.
  • 9Yan Shuicheng,Wang Huan.Semi-supervised Learning by Sparse Representation[C]//Proceedings of the Ninth SIAM International Conference on Data Mining.Philadelphia:Society for Industrial and Applied Mathematics Publications,2009:792-801.
  • 10孙玉宝,肖亮,韦志辉,邵文泽.基于Gabor感知多成份字典的图像稀疏表示算法研究[J].自动化学报,2008,34(11):1379-1387. 被引量:43

二级参考文献36

  • 1Vinje W E, Gallant J L. Sparse coding and decorrelation in primary visual cortex during natural vision. Science, 2000, 287(5456): 1273-1276
  • 2Olshausen B A, Field D J. Emergency of simple-cell receptive field properties by learning a sparse coding for natural images. Nature, 1996, 381(6583): 607-609
  • 3Olshausen B A, Field D J. Sparse coding with an overcomplete basis set: a strategy employed by VI? Visual Research, 1997, 37(33): 3311-3325
  • 4Mallat S G, Zhang Z F. Matching pursuits with timefrequency dictionaries. IEEE Transactions on Signal Processing, 1993, 41(12): 3397-3415
  • 5Davis G M, Mallat S G, Zhang Z F. Adaptive time-frequency decompositions. SPIE Journal of Optical Engineering, 1994, 33(7): 2183-2191
  • 6Chen S S, Donoho D L, Saunders M A. Atomic decomposition by basis pursuit. SIAM Journal of Scientific Computing, 1999, 20(1): 33-61
  • 7Gorodnitsky I F, Rao B D. Sparse signal reconstruction from limited data using FOCUSS: are-weighted minimum norm algorithm. IEEE Transactions on Signal Processing, 1997, 45(3): 600-616
  • 8Figueiredo M A T, Nowak R D, Wright S J. Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(4): 586-598
  • 9Mancera L, Portilla J. Lo-norm-based sparse representation through alternate projections. In: Proceedings of IEEE International Conference on Image Processing. Washington D. C., USA: IEEE, 2006. 2089-2092
  • 10Bergeau F, Malt S. Match pursuit of images. In: Proceedings of the 1995 International Conference on Image Processing. Washington D. C., USA: IEEE, 1995. 53

共引文献73

同被引文献24

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部