期刊文献+

基于时空局部二值模式的火灾视频识别 被引量:1

Fire video recognition based on volume local binary pattern
下载PDF
导出
摘要 为了获得较高识别率,引入时空局部二值模式,用以识别火灾视频。先以时空局部二值模式提取视频中的表观特征和运动特征后,再利用支持向量机对多种场景的火灾视频进行分类识别。针对白天火灾、夜晚火灾、室内火灾、室外火灾、森林火灾五种场景进行测试实验,结果显示,对夜晚火灾视频和室外火灾视频识别率可达到100%,对白天火灾、室内火灾、森林火灾视频的识别率分别为94.117 6%、95.238 1%、94.444 4%,这表明所提方法有效,其识别率不易受场景光照条件或复杂背景影响,具有鲁棒性。 In order to get higher recognition rate for fire video, an approach based on Volume Local Binary Pattern (VLBP) is proposed. Firstly, the features of fire video are modeled with VLBP by combining appearance and motion. Secondly, Support Vector Machine (SVM) is used to classify the fire video under various scenes. Test experiments results for five scenes of daytime fire, nighttime fire, indoor fire, outdoor fire and forest fire show that the recognition rate for nighttime fire and outdoor fire can reach 100~, and the recognition rate of daytime fire, indoor fire, forest fire are 94. 117 6~, 95. 238 1%, 94. 444 4%, respectively. It shows that the proposed algorithm can be used to classify fire video and also the recognition rate will not be influenced by the changes of the light condition and the complex background. This shows that the algorithm is robust.
出处 《西安邮电大学学报》 2015年第3期76-80,共5页 Journal of Xi’an University of Posts and Telecommunications
基金 国家自然科学基金资助项目(61202183 61340040) 陕西省国际科技合作计划资助项目(2013KW04-05)
关键词 时空局部二值模式 火灾视频 支持向量机 分类识别 volume local binary patterns, fire video, support vector machine, recognition
  • 相关文献

参考文献16

  • 1许志杰,王晶,刘颖,范九伦.计算机视觉核心技术现状与展望[J].西安邮电学院学报,2012,17(6):1-8. 被引量:20
  • 2刘颖,范九伦.基于内容的图像检索技术综述[J].西安邮电学院学报,2012,17(2):1-8. 被引量:20
  • 3Phillips W III,Shah M,Lobo N V.Flame recognition in video[J].Pattern Recognition Letters,2002,23(1/2/3):319-327.
  • 4Celik T,Demirel H,Ozkaramanli H,et al.Fire detection using statistical color model in video sequences[J].Journal of Visual Communication and Image Representation,2007,18(2):176-185.
  • 5Hideaki Y,Junichi Y.Fire flame detection algorithm using a color camera[C]//Proceeding of International Symposium on Micromechatronics and Human Science.Nagoya:IEEE,1999:255-260.
  • 6Liu Chebin,Ahujia N.Vision based fire detection[C]//Proceedings of IEEE International Conference on Pattern Recognition.Toyota:IEEE,2004:134-137.
  • 7Toreyin B,Dedeoglu Y,Gudukbay U,et al.Real-time fire and flame detection in video[C]//Proceedings of IEEE International Conference on Acoustics,Speech,and Signal Processing.PA Philadelphia:IEEE,2005:669-672.
  • 8Nelson R C,Polana R.Qualitative recognition of motion using temporal texture[J].CVGIP:Image Understand,1992,56(1):78-89.
  • 9Zhao Guoying,Pietikainen M.Dynamic texture recognition using local binary patterns with an application to facial expressions[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,29(6):915-928.
  • 10Ojala T,Pietikainen M,Maenpaa T.Multiresolution gray scale and rotation invariant texture analysis with local binary patterns[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(7):971-987.

二级参考文献81

  • 1姚畅,钱盛友.基于神经网络的多传感器火灾报警系统[J].计算机工程与应用,2006,42(3):219-221. 被引量:8
  • 2杨旭强,冯勇,刘洪臣.一种基于HSI颜色模型的目标提取方法[J].光学技术,2006,32(2):290-292. 被引量:34
  • 3周军盈,杜啸晓.图像识别技术在火灾探测中的应用[J].消防科学与技术,2007,26(4):417-420. 被引量:14
  • 4VladimirNVapnik.统计学习理论的本质[M].北京:清华大学出版社,2000.96-107.
  • 5史忠植.知识发现[M].北京:清华大学出版社,2001..
  • 6Koenderink J J, Doorn A J. Affine structure from mo- tion[J]. Journal of the optical society of America A, 1991,8(2) : 377-385.
  • 7Comanieiu D. Kernel-based object tracking[J]. IEEE transactions on pattern analysis and machine intelli- gence, 2003,25(5) : 564-577.
  • 8LI S Z, Jain A K. Handbook of face recognition[M]. New York: Springer-Verlag, 2011 :353-383.
  • 9Deng J, Berg A C, LI F F. Hierarchical semantic in- dexing for large scale image retrieval[C]//IEEE Con- ference on computer vision and pattern recognition, 2011 : 785-792.
  • 10Piras L, Giacinto G. Synthetic Pattern Generation for Imbalanced Learning in Image Retrieval [J ]. Pattern Recognition Letters, 2012(In pressed).

共引文献141

同被引文献9

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部