期刊文献+

具有属性析取萎缩-扩张特征的动态数据智能挖掘 被引量:1

Dynamic Data Intelligent Mining with Attributes Disjunctive Reduction and Expansion Characteristics
下载PDF
导出
摘要 S-粗集(singular rough sets)是把动态特征引入到Z.Pawlak粗集中对其加以改进而提出的,S-粗集具有动态特征。S-粗集具有3种形式:单向S-粗集(one direction singular rough sets)、单向S-粗集对偶(dual of one direction singular rough sets)与双向S-粗集(two direction singular rough sets);在一定条件下,单向S-粗集、单向S-粗集对偶与双向S-粗集被还原成Z.Pawlak粗集。利用单向S-粗集和单向S-粗集对偶给出具有属性析取特征的动态数据智能挖掘与应用;属性析取是数据具有的逻辑特征之一。主要结果是:利用单向S-粗集、单向S-粗集对偶结构,给出属性析取萎缩-扩张特征的动态数据生成与它的属性析取萎缩-扩张关系;给出数据推理与推理模型;利用数据推理给出动态数据智能挖掘定理;利用这些理论结果,给出动态数据智能挖掘-智能认知的应用。 S-rough sets (singular rough sets) are generated by introducing dynamic characteristics into Z. Pawlak rought sets. S-rough sets have dynamic characteristics. In general, S-rough sets have three formulas including one direction S-rough sets, dual of one direction S-rough sets and two directions S-rough sets. Given certain conditions, one direction S-rough sets and dual of one direction S-rough sets can be reduced to Z. Pawlak rought sets. Dynamic data intelligent mining with attribute disjunctive characteristics was considered. Attribute disjunctive is one of logic characteristics of data. The main results of this paper include generation of dynamic data and the relations between dynamic data and its attribute disjunctive reduction and expansion, data reasoning and reasoning model, theorems of dynamic data intelligent mining,and applications of the obtained results.
出处 《计算机科学》 CSCD 北大核心 2015年第5期215-220,共6页 Computer Science
基金 山东省高校科技计划(J12LN92)项目资助
关键词 S-粗集 属性析取 动态数据生成 数据推理 数据智能挖掘 应用 S-rough sets,Attribute disjunctive,Generation of dynamic data,Data reasoning,Data intelligent mining,Application
  • 相关文献

参考文献13

二级参考文献83

共引文献347

同被引文献14

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部