期刊文献+

基于差异关系的变精度粗糙集知识约简算法研究 被引量:6

Research on Knowledge Reduction Algorithm Based on Variable Precision Tolerance Rough Set Theory
下载PDF
导出
摘要 有效的知识约简算法是粗糙集理论的重要研究内容。粗糙集是一个去掉冗余特征的有效工具。经典的粗糙集方法要求数值用离散数据表达,对于连续值则在处理前必须进行离散化处理。真实数据往往存在连续值,为了避免运用粗糙集方法所必需的离散化过程带来的信息丢失,将差异关系应用于粗糙集的知识约简。为进一步增强差异关系粗糙集对噪声数据的适应能力,提出基于差异关系的变精度粗糙集知识约简算法,并分析差异关系下变精度粗糙集模型参数的特性,给出依赖度和参数范围关系描述,将参数取值从点扩展到区间范围。在UCI数据库的数据集上进行实验,结果证明了所提方法及相关理论的有效性。 Knowledge reduction is an important research issue in rough set theory. Rough set theory is an efficient mathematical tool for further reducing redundancy. The main limitation of traditional rough set theory is the lack of effective methods for dealing with real-valued data. However, practical data sets are always continuous. This has been ad- dressed by employing discretization methods, which may result in information loss. This paper investigated one approach combining tolerance relation together with rough set theory. In order to enhance the ability to adapt to the noise data, this paper explored the knowledge reduction algorithm based on variable precision tolerance rough set theory. The characteristics of parameter were analyzed. The relationship between the classification quality and parameter interval was described, and the parameter value was extended to interval range. The experimental results demonstrate that our proposed algorithm and the related theory are effective.
作者 焦娜
出处 《计算机科学》 CSCD 北大核心 2015年第5期265-269,共5页 Computer Science
基金 国家社科基金青年项目(13CFX049) 上海高校青年教师培养资助计划(hdzf10008)资助
关键词 粗糙集理论 差异关系 变精度 参数范围 属性依赖度 Rough set theory, Tolerance relation, Variable precision, Parameter interval, Degree of dependency of feature
  • 相关文献

参考文献20

  • 1Pawlak Z.Rough sets[J].International Journal of Information Computer Science,1982,11(5):341-356.
  • 2Ziarko W.Variable precision rough set model[J].Journal ofComputer and System Sciences,1993,46:39-59.
  • 3Katzberg J D,Ziarko W.Variable precision rough sets withasymmetric bounds[C]∥Ziarko W.ed.Proceedings of Rough Sets,and Fuzzy Sets and Knowledge Discovery(RSKD'93).London:Springer-Verlag,1994:167-176.
  • 4Mi J S,Wu W Z,Zhang W X.Approaches to knowledge reduction based on variable precision rough set model[J].Information Sciences,2004,159(3):255-272.
  • 5张贤勇,莫智文.变精度粗糙集[J].模式识别与人工智能,2004,17(2):151-155. 被引量:43
  • 6Zhang X Y,Mo Z W,Xiong F,et al.Comparative study of variable precision rough set model and graded rough set model[J].International Journal of Approximate Reasoning,2012,53(1):104-116.
  • 7Zhang H Y,Leung Y,Zhou L.Variable-precision-dominance-based rough set approach to interval-valued information systems[J].Information Sciences,2013,244(20):75-272.
  • 8Yao Y Y.Probabilistic rough set approximations[J].International Journal of Approximate Reasoning,2008,49(2):255-271.
  • 9Yao Y Y,Yao B X.Covering based rough set approximations[J].Information Sciences,2012,200:91-107.
  • 10苗夺谦,胡桂荣.知识约简的一种启发式算法[J].计算机研究与发展,1999,36(6):681-684. 被引量:507

二级参考文献22

  • 1王珏,苗夺谦,周育健.关于Rough Set理论与应用的综述[J].模式识别与人工智能,1996,9(4):337-344. 被引量:264
  • 2苗夺谦.Rough Set理论及其在机器学习中的应用研究(博士学位论文)[M].北京:中国科学院自动化研究所,1997..
  • 3苗夺谦.Rough Set理论及其在机器学习中的应用研究[博士学位论文].北京:中国科学院自动化研究所,1997..
  • 4王珏,J Comput Sci Technol,1998年,13卷,2期,189页
  • 5Miao Duoqian,IEEE ICIPS’97,1997年,1155页
  • 6苗夺谦,博士学位论文,1997年
  • 7陆汝钤,人工智能,1996年
  • 8Wong S K M,Bull Polish Acad Sci,1985年,33卷,693页
  • 9Wang Jue,J Comput Sci Technol,1998年,13卷,2期,189页
  • 10苗夺谦,博士论文,1997年

共引文献674

同被引文献76

  • 1姜小华,罗军.非确定性数据库中空值处理[J].计算机应用,2008,28(S2):235-237. 被引量:4
  • 2王丽娟,吴陈,杨习贝,严熙.基于容差关系的扩展粗集模型中的知识依赖[J].计算机工程与应用,2006,42(33):58-61. 被引量:2
  • 3黎俊锋,朱锋峰.基于样本密度的FCM改进算法[J].科学技术与工程,2007,7(4):636-638. 被引量:12
  • 4赵越岭,王建辉,顾树生.基于变精度粗糙集阈值的选取[J].控制与决策,2007,22(1):78-80. 被引量:11
  • 5宋清昆,郝敏.一种改进的模糊C均值聚类算法[J].哈尔滨理工大学学报,2007,12(4):8-10. 被引量:26
  • 6Wu X,Zhu X,Wu G Q,et al.Data mining with Big Data[J].Knowledge and Data Engineering,IEEE Transactions on,2014,26(1):97-107.DOI:10.1109/TKDE.2013.109.
  • 7Lin G,Liang J,Qian Y.Multigranulation Rough Sets:From Partition to Covering[J].Information Sciences,2013,241:101-118.DOI:10.1016/j.ins.2013.03.046.
  • 8Chen N,Xu Z,Xia M.Correlation Coefficients of Hesitant Fuzzy Sets and Their Applications to Clustering Analysis[J].Applied Mathematical Modelling,2013,37(4):2197-2211.DOI:10.1007/s12559-014-9313-9.
  • 9Li F,Ye M,Chen X.An Extension to Rough c-means Clustering Based on Decision-theoretic Rough Sets Model[J].International Journal of Approximate Reasoning,2014,55(1):116-129.DOI:10.1016/j.ijar.2013.05.005.
  • 10Tsekouras G E,Tsimikas J.On Training RBF Neural Networks using Input-output Fuzzy Clustering and Particle Swarm Optimization[J].Fuzzy Sets and Systems,2013,221:65-89.DOI:10.1016/j.fss.2012.10.004.

引证文献6

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部