期刊文献+

基于监督协同近邻保持投影的人脸识别算法 被引量:1

Supervised Collaborative Neighborhood Preserving Projection Based Algorithm for Face Recognition
下载PDF
导出
摘要 基于流形学习理论的近邻保持嵌入算法(Neighborhood Preserving Embedding,NPE)能够发现数据集中隐含的内蕴结构,但当训练样本不足时,无法准确发现数据的内在流形结构,从而影响算法的识别效果。针对这一问题,对NPE算法进行改进,提出了监督协同近邻保持投影算法(Supervised Collaborative Neighborhood Preserving Projection,SCNPP)。该算法在类别信息的指导下构建近邻图,使同类样本间的几何关系得到保持,利用协同表示弥补NPE因样本不足造成的表示误差,以一个有效保持样本近邻关系、准确发现数据内在流形结构的权值矩阵计算投影矩阵,提高分类效果。在FERET、AR和Extended Yale B人脸数据集上的实验验证了该算法的有效性。 Neighborhood preserving embedding (NPE) algorithm based on manifold learning theory can discover the intrinsic structure behind data set. But in the scenery of face recognition,algorithm can't detect the intrinsic structure accurately due to the insufficient of data, sequentially, the performance of NPE is influenced. In order to solve the problems of NPE in face recognition, a supervised collaborative neighborhood preserving projection (SCNPP) algorithm was presented. The proposed algorithm constructs the neighborhood graph under the guidance of category information, makes the geometric relationship between the same samples be preserved effectually,utilizes the collaborative representation to remedy the representation errors of NPE caused by the lack of data, calculates the projection matrix with a weight matrix which preserves the neighborhood relationship effectually and discoveries the intrinsic manifold structure of data accurately,improves the performance of classification. Extensive experiments on popular face databases (FERET, AR and Extended Yale B) verify the effectiveness of the proposed method.
出处 《计算机科学》 CSCD 北大核心 2015年第5期309-314,共6页 Computer Science
基金 甘肃省自然科学基金(2011GS04147) 国家自然科学基金(61263047)资助
关键词 人脸识别 流形学习 近邻保持嵌入 协同表示 监督协同近邻保持投影 Face recognition, Manifold learning, Neighborhood preserving embedding, Collaborative representation, Supervised collaborative neighborhood preserving projection
  • 相关文献

参考文献21

  • 1Turk M,Pentland A.Eigenfaces for recognition[J].Journal of cognitive neuroscience,1991,3(1):71-86.
  • 2Belhumeur P N,Hespanha J P,Kriegman D.Eigenfaces vs.fisherfaces:Recognition using class specific linear projection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,19(7):711-720.
  • 3Tenenbaum J B,Desilva V,Langford J C.A global geometricframework for nonlinear dimensionality reduction[J].Science,2000,290(5500):2319-2323.
  • 4Roweis S T,Saul L K.Nonlinear dimensionality reduction by locally linear embedding[J].Science,2000,290(5500):2323-2326.
  • 5Belkin M,Niyogi P.Laplacian eigenmaps for dimensionality re-duction and data representation[J].Neural computation,2003,15(6):1373-1396.
  • 6He Xiao-fei,Yan Shui-cheng,Hu Yu-xiao,et al.Face Recogni-tion Using Laplacianfaces[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(3):328-340.
  • 7He Xiao-fei,Cai Deng,Yan Shui-cheng,et al.Neighborhood preserving embedding[C]∥Proceedings of the Tenth IEEE International Conference on Computer Vision.Beijing,China:IEEE Computer Society,2005.
  • 8Wright J,Yang A Y,Ganesh A,et al.Robust face recognitionvia sparse representation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2009,31(2):210-227.
  • 9Cheng Bin,Yang Jian-chao,Yan Shui-cheng,et al.Learning with l1-graph for image analysis[J].IEEE transactions on image processing:a publication of the IEEE Signal Processing Society,2010,19(4):858-866.
  • 10郑豪,金忠.一种有监督的稀疏保持近邻嵌入算法[J].计算机工程,2011,37(16):155-157. 被引量:3

二级参考文献44

  • 1Yan S,Xu D,Zhang B,et al.Graph embedding and extensions:a general framework for dimensionality reduction[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2007,29(1):40-51.
  • 2He X,Ji M,Bao H.Grapb embedding with constraints[C]//Proeeedings of the Twenty-First International Joint Conference on Artificial Intelligence (IJCAI), 2009 : 1065-1070.
  • 3Belkin M, Niyogi ELaplacian eigenmaps and spectral techniques for embedding and clustering[J].Advanees in Neural Information Processing Systems(NIPS),2001,14:585-591.
  • 4Roweis S, Saul L.Nonlinear dimensionality reduction by locally linear ernbedding[J].Scienee,2000,290(5500) :2323-2326.
  • 5He X, Niyogi P.Locality preserving projections[C]//Proe Conf Advances in Neural Information Processing Systems(NIPS),2003.
  • 6He X, Cai D, Yan S, et al.Neighborhood preserving embedding[C]// Proc in International Conference on Computer Vision(ICCV), 2005 : 1208-1213.
  • 7Qiao L, Chen S.Sparsity preserving projections with application to face recognition[J].Pattem Recognition, 2010,43 ( 1 ) : 331-341.
  • 8Friedman J H.Regularized discriminant analysis[J].Joumal of the American Statistical Association, 1989,84:165-175.
  • 9Park C, Park H.A comparision of generalized linear diseriminant analysis algorithms[J].Pattern Recognition, 2008,41 (3) : 1083-1097.
  • 10Yu H, Yang J.A direct LDA algorithm for high-dimensional da- ta-with application to face recognition[J].Pattern Recognition, 2001,34(10) : 2067-2070.

共引文献9

同被引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部