期刊文献+

基于平方根无迹卡尔曼滤波的混沌信号盲分离

Blind Source Separation of Chaotic Signals Based on Square Root Unscented Kalman Filters
下载PDF
导出
摘要 针对现有卡尔曼盲分离算法在分离混沌信号时性能较差的问题,提出了基于平方根无迹卡尔曼滤波器(SRUKF)的混沌信号盲分离方法。该方法采用递推方式实现,在每一次递推中,首先将分离向量作为状态变量进行卡尔曼估计,然后将分离向量视为已知量,再次利用SRUKF重建源信号,从而得到源信号在最小均方误差意义下的优化估计。实验仿真表明,所提算法能够快速收敛,并且在噪声环境下估计误差比现有的卡尔曼盲分离方法明显减小。 The existing blind source separation methods in the framework of Kalman filtering suffers great per-formance degeneration when applying to chaotic mixtures with a low signal to noise ratio.To solve this prob-lem,a new two-step recursive approach based on square root unscented Kalman filters was proposed.In every recursion,the separation vector was firstly estimated through a square root unscented Kalman filter as its state varibles.Then in the second step,the chaotic souce was estimated again through a Kalman filter other than di-rectly computed by mutiplying the observations to the former obtained separation vector.Thereby,an optimal estimaion of the chaotic source was obtained.A simulation example was designed in comparison with existing Kalman based blind separation methods.Simulation results indicated that the proposed method performed better than existing unscented Kalman approaches.
出处 《探测与控制学报》 CSCD 北大核心 2015年第2期66-71,共6页 Journal of Detection & Control
关键词 盲分离 混沌信号 平方根无迹卡尔曼滤波器 blind source separation chaotic signal square root unscented Kalman filter
  • 相关文献

参考文献6

二级参考文献27

  • 1杨波,孙卫伟,冯久超.混沌调制通信系统解调技术比较研究[J].西南师范大学学报(自然科学版),2006,31(6):50-58. 被引量:1
  • 2邓平,朱中梁.一种天线阵列定位法及其仿真研究[J].电子与信息学报,2005,27(6):841-844. 被引量:5
  • 3李雪霞,冯久超.一种混沌信号的盲分离方法[J].物理学报,2007,56(2):701-706. 被引量:16
  • 4范志平,邓平,刘林.蜂窝网无线定位[M].北京:电子工业出版社,2002.
  • 53GPP Office. 3GPP TS 25. 215 v6. 0. 0. Physical layer-Measurements (FDD) [S]. France: 3GPP, 2003.
  • 6Aidala V, Hammel S E. Utilization of modified polar co- ordinates for bearings-only tracking [J]. IEEE Transac- tions on Automatic Control, 1983,28 (3) : 283 - 294.
  • 7Simon Julier, Jeffrey Uhlmann, Hugh F Durrant-Whyte. A new method for the nonlinear transformation of means and covariances in filters and estimators [C]// IEEE Transactions on Automatic Control, USA: IEEE Press, 2000: 477-482.
  • 8Banani S A, MasnadiShirazi M A. A new version of un- scented Kalman filter[C]// Proceedings of theWorld A- cademy of Science, Engineering and Technology. Barcelo- na, Spain, 2007 : 192 - 197.
  • 9Xiong K, Chan C, Zhang H S. Detection of satellite attitude sensor faults using the UKF[J]. 1EEE Transactions on Aero- space and Electronic Systems, 2007,43(2) :480-491.
  • 10Arulampalam S, Maskell S, Gordon N, et al. A tutorial onparticle filters for online non-linear/non-Gaussian Bayesiantracking[J]. IEEE Transactions on Signal Pro- cessing, 2002,50 (2) : 174 - 188.

共引文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部