期刊文献+

基于Harris角点和改进SURF描述子的图像快速拼接 被引量:2

Image fast mosaic based on Harris corner points and improved SURF descriptor
下载PDF
导出
摘要 针对SURF算法计算量大、对应点匹配时间长的不足,以Harris角点取代SURF斑点作为特征点,改进了描述子生成区域的子块划分方式,使区域面积减小40%。同时,引入尺度因子s以弥补采样区域减小的影响,形成一种计算量小、独特性好的描述子。以该方法构造的角点特征矢量参与同名点匹配,可实现较好的匹配快速性和准确性。匹配完成后,分别使用RANSAC方法和L-M方法获取变换矩阵并进行非线性优化,最后根据图像的不同区域采用不同方法完成图像融合。实验结果表明,该图像拼接方法与传统SURF法相比,图像匹配时间可节约35%以上,整体图像的拼接时间可节约30%左右,大幅提高了图像拼接的效率。 Since the shortages of SURF algorithm are the large amount of calculations and long matching time of corresponding points,the Harris corner points are taken as the feature points instead of the SURF spots. The sub-block dividing mode of de-scriptor generated region is improved,and the region areas are reduced by 40%. The descriptor with little calculated quantity and good peculiarity is shaped by the introduced scale factor s to eliminate the influence of sample region decrease. The corner point characteristic vector parameter structured by the proposed method is matched with the same name point,so rapidity and ac-curacy of matching are well realized. After matching,RANSAC method and L-M method are respectively adopted to obtain the transformation matrix,and execute nonlinear optimization. Image fusion is accomplished with different methods according to different image regions. The experimental results show that the image mosaic method,compared with the traditional SURF method, can save more than 35% image matching time and about 30% mosaic time of the whole image. The efficiency of image mosaic is greatly improved.
出处 《现代电子技术》 北大核心 2015年第11期87-90,94,共5页 Modern Electronics Technique
基金 国防技术基础研究项目 沈阳飞机工业(集团)有限公司合作项目(101130192)
关键词 HARRIS角点 SURF描述子 L-M非线性优化 图像匹配 图像拼接 Harris corner point SURF descriptor L-M nonlinear optimization image matching image mosaic
  • 相关文献

参考文献9

  • 1LOWE D G. Object recognition from local scale-invariant fea- ture [C]// International Conference on Computer Vision. Greece: IEEE, 1999: 1150-1157.
  • 2BAY H, ESS A, TUYTELAARS T, et al. Speeded-up robust features (SURF) [J]. Computer Vision and Image Understanding, 2008, 110(3): 346-359.
  • 3HARRIS C, STENHENS M. A combined corner and edge de- tector [C]// Proceedings of Fourth Alvey Vision Conference. Manchester: ICASSP, 1988: 147-152.
  • 4M1KOLAJCZYK K, SCHMID C. A performance evaluation of local descriptors [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(10) : 1615-1630.
  • 5涂春萍,柴亚辉,李广丽,刘觉夫.一种基于Harris角点特征精确匹配的图像拼接方法[J].实验室研究与探索,2011,30(10):40-43. 被引量:15
  • 6FISHER M, BOLLES R C. Random sample consensus: a para-digm for model fitting with application to image analysis and automated cartography [J]. Communications of ACM, 1981, 24 (6) : 381-396.
  • 7伏燕军,杨坤涛,邹文栋,何兴道.基于Levenberg-Marquardt算法的图像拼接[J].激光杂志,2007,28(5):46-48. 被引量:22
  • 8GUI Yang, SU Ang, DU Jing. Point-pattern matching method using SURF and shape context [J]. Optik- International Journal for Light and Electron Optics, 2013, 124(14) : 1869-1873.
  • 9TUYTELAARS T, MIKOLAJCZYK K. Local invariant feature detectors: a survey [J]. Foundations and Trends in Computer Graphics and Vision, 2008, 3(3) : 177-210.

二级参考文献23

  • 1黄勇,王崇骏,王亮,杭燕,陈兆乾.基于形状不变矩的图像检索算法的研究[J].计算机应用研究,2004,21(7):256-257. 被引量:21
  • 2赵文彬,张艳宁.角点检测技术综述[J].计算机应用研究,2006,23(10):17-19. 被引量:84
  • 3尚明姝,解凯.一种基于特征的全自动图像拼接算法[J].微计算机应用,2006,27(6):747-750. 被引量:17
  • 4Richard Szeliski. Image alignment and stitching: A tutorial [ J ]. Foundations and Trends in Computer Graphics and Vision, 2006, 2 (1) : 1-104.
  • 5David G Lowe. Distinctive image features from scale - invariant keypoints [ J]. International Journal of Computer Vision, 2004, 60 (2) : 91-110.
  • 6Brown M,Lowe D G. Recognising panoramas [ C ]//In. Proceedings of the 9th International Conference on Computer Vision ( ICCV2003 ). Washington D C USA : IEEE Computer Society,2003 : 1218-1225.
  • 7Georgios Kordelas, Petros Daras. Robust SIFT-Based featurematching using Kendall'S Rank Correlation Measure[ C]//16th IEEE International Conference on Image Processing. USA: IEEE Press Pisca, 2009: 325-328.
  • 8Harris C,Stephens M. A combined corner and edge detector[ C l// Proceedings of the 4th Alvey Vision Conference. Manchester, UK: SpringerVerlag, 1988 : 147-151.
  • 9Wang X G, Wu F C, Wang Z H. Harris correlation descripter (HCD) : A novel descripter for point matching [ C ]//In Proceedings of CSSE (2). USA: International Conference on Computer Science and Software Engineering,2008 : 1154-1157.
  • 10Hu Ming-Kuei. Visual pattern recognition by moment invariants [ J]. IRE Transactions on Information Theory, 1962, 8(2) : 179-187.

共引文献35

同被引文献20

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部