期刊文献+

车辆通过交叉口的生态驾驶轨迹优化研究 被引量:14

Optimization of Eco-driving Trajectories at Intersections for Energy Saving and Emission Reduction
下载PDF
导出
摘要 车辆在道路交叉口经常出现启停和怠速现象,交叉口成为了道路交通网络中高能耗高排放的重要区域。因此需要对车辆通过交叉口的生态驾驶轨迹进行优化研究。首先将当前信号状态分为六种情景,利用数学模型对不同情景下车辆通过交叉口的驾驶轨迹进行定量表达;然后将交叉口上游和下游整体考虑,针对各情景建立了生态驾驶策略模型和生态驾驶轨迹优化算法;最后假定情景并设定参数,利用MATLAB开发程序,结合基于机动车比功率参数的排放量化模型,对各驾驶轨迹的排放进行仿真模拟。模拟结果表明:构建的生态驾驶轨迹优化算法,可使车辆CO2、NOx、CO、HC 4种排放物分别降低30.1%、23.6%、24.9%、21.5%,可为面向生态的驾驶辅助系统开发提供应用算法。 Due to the frequent stop-and-go and idling behaviors of vehicles at road intersections,intersections have become important areas that experience high energy consumption and emissions in road traffic net- works. Therefore we need to study the optimization of eco-driving trajectories crossing the intersections. In this context, this research first divides the signal timings into six different conditions, and then describes the driving trajectories of vehicles crossing the intersections in different conditions through mathematical models. Subsequently,this research designs the eco-driving strategies models and the optimized algorithms of eco-driving trajectories from both the upstream and downstream of the intersections under each condi- tion. Finally,by establishing a scenario with given parameters,the research simulates the emissions of vari- ous driving trajectories using the emission model based on the vehicle specific power and the program de- veloped on MATLAB. The simulation results show that the proposed optimized algorithms of eco-driving trajectories are able to reduce CO2 ,NOx ,CO and HC by 30.1% ,23.6% ,24.9% and 21.5%. This research provides applicational algorithms for developing the eco-driving assistant system.
出处 《安全与环境工程》 CAS 2015年第3期75-82,共8页 Safety and Environmental Engineering
基金 国家自然科学基金项目(71273024 51208033) 中央高校基本科研业务费专项资金项目(T15JB00120)
关键词 城市交通 交叉口 生态驾驶轨迹 驾驶行为 urban traffic intersection eco-driving trajectories driving behaviors
  • 相关文献

参考文献16

  • 1骆倩雯.PM2.5超三成来自机动车[N].北京日报,2014-04—16(5).
  • 2张潇,于雷,宋国华.基于PEMS技术的交叉口尾气排放特性分析[J].安全与环境工程,2006,13(3):50-54. 被引量:16
  • 3Unal A,Rouphail N, Frey H. Effect of arterial signalization and level of service on measured vehicle emissions[-C]//The 82nd Transportation Research Board Annual Meeting, Transporta- tion Research Board of the National Academies. Washington, D. C. ,USA, 2003,1842 : 47-56.
  • 4Coelho M, Farias T, Rouphail N. Impact of speed control traffic signals on pollutant emissions[J]. Transportation Research Part D: Transport and Environment, 2005,10 (4) : 323-340.
  • 5Boriboonsomsin K, Vu A, Barth M. Eco-driving : Pilot evalua- tion of driving behavior changes among U. S. drivers[R]. Cali- fornia: University of California Transportation Center Faculty Research,2010z 1 17.
  • 6Sivak M, Schoettle B. Eco-driving .. Strategic, tactical, and opera- tional decisions of the driver that influence vehicle fuel economy [J]. Transport Policy, 2012,22 : 96-99.
  • 7Xia H, Boriboonsomsin K, Schweizer F, et al. Field operational testing of Eeo-approach technology at a fixed-time signalized in- terscction[ C:/ /15th International IEEE Conference on Intelli- gent Transportation Systems. knehorage: .&laska, USA, 2012: 188-193.
  • 8Wu G, Boriboonsomsin K, Zhang W, et al. Energy and emission benefit comparison of stationary and in-vehicle advanced driving alert systems[J]. Transportation Research Record : Journal of the Transportation Research Board ,2010,2189(1) :98-106.
  • 9Sun J,Niu D, Chen S,et al. Development and investigation of a dynamic eco-driving speed guidance strategy for signalized high- way traffic[ C] / / The 92rid Transportation Research Board An- nual Meeting, Transportation Research Board of the National Academies. Washington, D. C. , USA, 2013.
  • 10Rakha H,Kamalanathsharma R K. Eco-driving at signalized in tersections using V2I communicationEC://14th International IEEE Conference on Intelligent Transportation Systems. Wash- ington,D. C. ,USA,2011.

二级参考文献24

  • 1刘娟,于雷.北京市实时尾气数据收集的探索与实践[J].交通环保,2004,25(6):13-15. 被引量:9
  • 2BARTH M, AN F, YOUNGLOVE T, et al. Compre- hensive modal emissions model ( CMEM ) , version 2. 0, user' s guide[ R]. Univ. of California, Riverside, Riverside, California, 2000.
  • 3JIMENEZ-PALACIOS J. Understanding and quantif- ying motor vehicle emissions with vehicle specific pow- er and TILDAS remote sensing[ D]. Massachusetts In- stitute of Technology, Cambridge, 1999.
  • 4Davis N, LENTS J, OSSES M, et al. Development and application of an international vehicle emissions model[ C ]. 84th Transportation Research Board Annu- al Meeting CD-ROM, Washington, D. C., USA, 2005.
  • 5U.S. Environmental Protection Agency. Motor vehicle emission simulator (MOVES) 2010 user guide [ R ]. EPA -420 - B -09 -041. Washington, D. C. , USA, 2009.
  • 6KIRK B, FAGAN K, RENNER R. Development and demonstration of a system for using cell phones as traf- fic probes[ R]. Globis Data Inc. 300 Earl Grey Drive, Suite 222, Kanata, Ontario, Canada, 2005.
  • 7BRZEZINSKI C, ENNS P. Final facility-specific speed correction factors [ R]. EPA - 420 - R - 01 - 060, Washington, D.C., USA, 2001.
  • 8CAPPIELLO A, CHABINI I, NAM E, et al. A statis- tical model of vehicle emissions and fuel consumption [R]. Proceedings of IEEE 5th International Confer- ence on Intelligent Transportation Systems, 2002:801 - 809.
  • 9HANSEN J Q, WINTER M, SORENSON S C. The in- fluence of driving patterns on petrol passenger car e- missions [ J ].The Science of the Total Environment, t995, 169: 129-139.
  • 10ZACHARIADIS T, SAMARAS Z. Comparative assess- ment of european tools to estimate traffic emissions [ J ]. International Journal of Vehicle Design, 1997, 18:312-325.

共引文献53

同被引文献87

引证文献14

二级引证文献85

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部