期刊文献+

具有自旋轨道耦合的冷原子费米气中的拓扑超流和FFLO超流

Topological superfluids and FFLO superfluids in spin-orbit coupled atomic Fermi gases
下载PDF
导出
摘要 研究了具有自旋轨道耦合的冷原子费米气在外磁场作用下的物理性质.通过自洽求解Bogoliubove-de Gennes方程,发现了在不同磁场强度和粒子填充数下,体系分别存在拓扑超流态和Fulde-Ferrell-LarkinOvchinnikov超流态.当体系处于拓扑超流态时,存在零能Majorana费米子. solving the It was investigated the properties of spin-orbit coupled atomic fermi gases under a Zeeman field. By Bogoliubove-de Gennes equation self-consistently, it was found that the system supported the topoi- ogical superfluid state and the Fulde-Ferrell-Larkin-Ovchinnikov superfluid state respectively when the system under the different strength of Zeeman field and filling factors. When the system turned into topological super- fluid state, a pair of zero-energy Majorana fermions were found.
作者 王俊 高先龙
出处 《浙江师范大学学报(自然科学版)》 CAS 2015年第2期129-132,共4页 Journal of Zhejiang Normal University:Natural Sciences
基金 国家自然科学基金资助项目(11374266 11174253)
关键词 自旋轨道耦合 拓扑超流 Majorana费米子 FFLO超流 spin-orbit coupling topological supertluids Majorana fermion FFLO superfluids
  • 相关文献

参考文献18

  • 1Lewenstein M, Sanpera A, Ahufinger V, et al. Ultracold atomic gases in optical lattices: mimicking condensed matter physics and beyond [ J ]. Advances in Physics,2007,56 ( 2 ) :243 -379.
  • 2Lin Yuju, Jimenez-Garcia K, Spielman I B. Spin-orbit-coupled Bose-Einstein condensates [ J ]. Nature,2011,471 ( 7336 ) : 83-86.
  • 3Wang Pengjun, Yu Zengqiang, Fu Zhengkun, et al. Spin-orbit coupled degenerate Fermi gases [ J ]. Physical Review Letters, 2012,109 ( 9 ) : 095301.
  • 4Zhang Chuanwei ,Tewari S, Lutchyn R M, et al. P,, + ipy superfluid from s-wave interactions of fermionic cold atoms [ J ]. Physical Review Let- ters ,2008,101 (16) : 160401.
  • 5Liu Xiaji,Jiang Lei,Pu Han,et al. Probing majorana fcrmions in spin-orbit-coupled atomic Fermi gases[J]. Physical Review A,2012,85(2) : 021603.
  • 6Wilczek F. Majorana returns [ J ]. Nature Physics,2009,5 ( 9 ) : 614 -618.
  • 7王一飞,龚昌德.拓扑平带上的分数量子反常霍尔效应(一)[J].浙江师范大学学报(自然科学版),2013,36(4):361-371. 被引量:1
  • 8Nayak C, Simon S H, Stem A, et al. Non-Abelian anyons and topological quantum computation[ J ]. Reviews of Modem Physics ,2008,80 (3) : 1083.
  • 9高先龙,陈捷,陈阿海.一维费米原子系统中的拓扑超流和Majorana费米子[J].浙江师范大学学报(自然科学版),2013,36(4):372-378. 被引量:2
  • 10Wu Fan, Guo Guangcan,Zhang Wei, et al. Unconventional superfluid in a two-dimensional Fermi gas with anisotropic spin-orbit coupling and Zeeman fields [ J ]. Physical Review Letters,2013,110 ( 11 ) : 110401.

二级参考文献80

  • 1Klitzing K V, Donia G, Pepper M. New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance[J 1. Phys Rev Lett, 1980 ,45 (6) :494497.
  • 2Tsui D C ,Stormer H L,Gossard A C. Two-dimensional magnetotransport in the extreme quantum limi] J]. Phys Rev Lett, 1982 ,48(22) : 1559- 1562.
  • 3Laughlin R B. Anomalous quantum Hall effect: an incompressible quantum fluid with fractionally charged excitations[J]. Phys Rev Lett,1983, 50(18) : 1395-1398.
  • 4Haldane F D M. Fractional quantization of the Hall effect: A hierarchy of incompressible quantum fluid states[J 1. Phys Rev Lett, 1983 ,51 (7) : 605-608.
  • 5Halperin B I. Statistics of quasi particles and the hierarchy of fractional quantized Hall states[J] . Phys Rev Lett, 1984 ,52 ( 18) : 1583 -1586.
  • 6JainJ K. Composite-fermion approach for the fractional quantum Hall effect[J] . Phys Rev Lett, 1989 ,63( 2) : 199-202.
  • 7Moore G, Read N. Nonabelions in the fractional quantum Hall effect[J]. Nucl Phys B, 1991 ,360( 91) :362-396.
  • 8Greiter M, Wen X G, Wilczek F. Paired Hall states[J]. Nucl Phys B, 1992 ,374(3) :567-614.
  • 9Haldane F D M. Model for a quantum Hall effect without Landau levels: condensed-matter realization of the" parity anomaly"[J 1. Phys Rev Lett, 1988 ,61 ( 18) :2015-2018.
  • 10Thouless DJ, Kohmoto M, Nightingale M P, et al, Quantized Hall conductance in a two-dimensional periodic potential[J 1 . Phys Rev Lett, 1982,49(6) :405408.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部