期刊文献+

基于Fisher线性判别分析的语音信号端点检测方法 被引量:20

Voice Activity Detection Based on Fisher Linear Discriminant Analysis
下载PDF
导出
摘要 传统的语音端点检测方法对辅音,特别是受到噪声污染的清音部分与背景噪声之间分离能力不足。针对上述问题,该文提出一种基于Fisher线性判别分析的梅尔频率倒谱系数(F-MFCC)端点检测方法。将清音信号和背景噪声视为两类分类问题,采用Fisher准则求解具有判别信息的最佳投影方向,使得投影后的特征参数具有最小类内散度和最大类间散度,从而增大清音与背景噪声的可分离性。在不同语音库上的实验结果表明,F-MFCC能够在不同信噪比和背景噪声条件下提高语音端点检测的准确率。 Traditional Voice Activity Detection (VAD) approaches can not effectively detect consonant as well as noisy unvoiced consonant. To address this problem, this paper proposes a VAD approach Mel Frequency Cepstrum Coefficient (F-MFCC) based on Fisher linear discriminant analysis, in consideration of two-class issue regarding to consonant and background noise. Fisher criterion rule is used to solve the optimal projection vector, building upon which we can minimize the within-class scatter can be minimized and the between-class scatter can be maximized, as a result to enhance separability between consonant and background noise. Extensive experiments are conducted to evaluate the F-MFCC performance. The results demonstrate that, under different SNR and noise conditions, the proposed approach achieves higher VAD accuracy.
出处 《电子与信息学报》 EI CSCD 北大核心 2015年第6期1343-1349,共7页 Journal of Electronics & Information Technology
关键词 语音处理 语音端点检测 梅尔频率倒谱系数 FISHER线性判别分析 Speech processing Voice Activity Detection Fisher linear discriminant analysis (VAD) Mel Frequency Cepstrum Coefficient (MFCC)
  • 相关文献

参考文献16

  • 1Junqua J C.Robustness and cooperative multi-model man-machine communication applications[C].The Structure of Multimodal Dialogue,Maratea,Italy,1991: 101-112.
  • 2ETSI.Universal Mobile Telecommunication Systems (UMTS); Mandatory Speech Codec speech processing functions,AMR speech codec; Voice Activity Detector VAD[S].ETSI TS 126 094 v11.0.0(2012-10): 1-26.
  • 3Wan Yu-long,Wang Xian-liang,Zhou Ruo-hua,et al..Enhanced voice activity detection based on automatic segmentation and event classification[J].Journal of Computational Information Systems,2014,10(10): 4169-4177.
  • 4宫朝辉,刁麓弘.改进共振峰提取的语音端点检测[J].计算机辅助设计与图形学学报,2013,25(8):1230-1236. 被引量:4
  • 5李晔,张仁智,崔慧娟,唐昆.低信噪比下基于谱熵的语音端点检测算法[J].清华大学学报(自然科学版),2005,45(10):1397-1400. 被引量:37
  • 6Chen Shi-huang and Wang Jhing-fa.A wavelet-based voice activity detection algorithm in noisy environments[C].Proceedings of the 9th IEEE International Conference on Electmnics,Circuits and Systems,Dubrovnik,Croatia,2002: 995-998.
  • 7Ghosh P K,Tsiartas A,and Narayanan S.Robust voice activity detection using long-term signal variability[J].IEEE Transactions on Audio,Speech,and Language Processing,2011,19(3): 600-613.
  • 8王宏志,徐玉超,李美静.基于Mel频率倒谱参数相似度的语音端点检测算法[J].吉林大学学报(工学版),2012,42(5):1331-1335. 被引量:16
  • 9Oh Sang-yeob and Chung Kyung-yong.Improvement of speech detection using ERB feature extraction[J].Wireless Personal Communications,2014,79(4): 2439-2451.
  • 10卢志茂,金辉,张春祥,任明溪.基于HHT和OSF的复杂环境语音端点检测[J].电子与信息学报,2012,34(1):213-217. 被引量:12

二级参考文献38

  • 1刘红星,戴蓓蒨,陆伟.基于共振峰谐波能量的语音端点检测[J].清华大学学报(自然科学版),2008,48(S1):754-759. 被引量:11
  • 2赵彦平,赵晓晖.用于语音端点检测的鲁棒性特征提取新方法[J].吉林大学学报(工学版),2006,36(1):77-81. 被引量:6
  • 3Othman H and Abounasr T. A semi-continuous state transition probability HMM-based voice activity detection [C]. IEEE International Conference on Acoustics, Speech, and Signal Processing, Montreal, Quebec, Canada, May 17-21, 2004, 5: V821-V824.
  • 4Mohadese Eshaqhi and Karami Mollaei M R. Voice activity detection based on using wavelet packet [J]. Digital Signal Processing, 2010, 20(4): 1102-1115.
  • 5Huang N E, Shen Z, Long S R, et al.. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [J]. Proceedings of the Royal Society A, 1998, 454: 903-995.
  • 6Ramirez J, Segura J C, Benitez C, et al.. An effective subband OSF-Based VAD with noise reduction for robust speech recognition [J]. IEEE Transactions on Audio, Speech, and Language Processing, 2005, 13(6): 1119-1129.
  • 7Celebi M E. Alternative distance/similarity measures for reduced ordering based nonlinear vector filters[C]. 2010 IEEE International Conference on Acoustics, Speech, and Signal Processing, Dallas, TX, March 14-19, 2010: 1266-1269.
  • 8Ghosh P K, Tsiartas A, and Narayanan S. Robust voice activity detection using long-term signal variability [J]. IEEE Transactions on Audio, Speech, and Language Processing, 2011, 19(3): 600-613.
  • 9Junqua J C, Mak B, Reaves B. A robust algorithm for word boundary detection in the presence of noise [J]. IEEE Transactions on speech and Audio Processing, 1994, 2(3):406-412.
  • 10Beritelli F, Casale S, Ruggeri G, et al. Performances evaluation and comparision of G. 729/AMR/fuzzy voice activity detectors [J]. IEEE Signal Processing Letters,2002, 9(3): 85-88.

共引文献61

同被引文献105

  • 1张仁志,崔慧娟.基于短时能量的语音端点检测算法研究[J].电声技术,2005,29(7):52-54. 被引量:45
  • 2李晔,张仁智,崔慧娟,唐昆.低信噪比下基于谱熵的语音端点检测算法[J].清华大学学报(自然科学版),2005,45(10):1397-1400. 被引量:37
  • 3黄利文,梁飞豹.改进的Fisher判别方法[J].福州大学学报(自然科学版),2006,34(4):473-477. 被引量:12
  • 4刘广建,张义军.一种实现语音信号同步的方法[J].现代电子技术,2007,30(3):49-50. 被引量:2
  • 5李建军,丁正生,张海燕.常用判别分类方法分析[J].西安科技大学学报,2007,27(1):138-142. 被引量:20
  • 6KINNUNEN T, LI H ZH. An overview of text-independent speaker recognition: From features to super-vectors [ J ]. Speech Communication, 2010, 52( 1 ) : 12- 40.
  • 7GONZALEZ-RODRIGUEZ J. Evaluating automatic speaker recognition systems: An overview of the NIST speaker recognition evaluations ( 1996-2014 ) [ J ]. Lo- quens, 2014, 1 ( 1 ) : 1-15.
  • 8KHOURY E, VESNICER B, FRANCO-PEDROSO J, et al. The 2013 speaker recognition evaluation in mobile en- vironment[ C ]. Proceedings of IAPR International Con- ference on Biometrics (ICB), 2013: 1-8.
  • 9KENNY P, BOULIANNE G, OUELLET P, et al. Joint factor analysis versus eigenchannels in speaker recogni- tion[J]. IEEE Transactions on Audio, Speech and Lan- guage Processing, 2007, 15(4) : 1435-1447.
  • 10DEHAK N, KENNY P, DEHAK R, et al. Front-end factor analysis for speaker verification [ J ]. IEEE Trans-actions on Audio, Speech, and Language Processing, 2011, 19(4) : 788-798.

引证文献20

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部