期刊文献+

全极化微波辐射计对环境参数敏感性分析 被引量:5

Environmental parameter sensitivity analysis for polarimetric microwave radiometer
原文传递
导出
摘要 为衡量全极化微波辐射计各通道对不同环境参数的探测能力,在构建全极化微波辐射传输正演模型的基础上,采用敏感性分析的方法,在固定背景场条件下,对全极化微波辐射计不同频率、各极化通道亮温对海面风速、海面风向、海面温度、大气水汽含量和云中液态水含量等重要环境参数的敏感度进行了分析和量化计算,对正演模型仿真亮温、星载全极化微波辐射计Wind Sat实测亮温相对于真实背景场参数、NCEP分析场资料和TAO/TRITON浮标实测海面风场数据的敏感性进行了分析。分析结果验证了全极化微波辐射计对海面风场的观测能力,衡量了上述重要环境参数对星载全极化微波辐射计各通道的单独影响程度,为中国自主研制全极化微波辐射计时通道指标设计、环境参数反演通道选取及算法提供支持。 Polarimetric microwave radiometer can provide sea surface wind vector products; this ability is a new development in spaceborne passive sensing. Sensitivity analysis of polarimetric microwave radiometer brightness temperature observations with respect to environmental factors may indicate the effect of environmental factors on polarimetric microwave radiometer brightness temperature observations. This finding may provide theoretical support for channel selection in the retrieval of important physical factors. On the basis of the polarimetric microwave forward model,we adopted sensitivity analysis to analyze,calculate,and quantify the sensitivity of each channel from the polarimetric microwave radiometer with important environmental parameters,such as sea surface wind speed,sea surface wind direction,sea surface temperature,atmospheric water vapor content,and cloud liquid water content,under fixed background field conditions. We also analyzed the sensitivity of the brightness temperature,which is simulated by the forward model or measured by using spaceborne polarimetric microwave radiometer WindS at,with respect to important environment parameters under real background field conditions from WindS at environmental data record,NCEP analysis data field,and TAO / TRITON buoy data record. Results include:( 1) The brightness temperature of 6. 8 GHz and 10. 7 GHz vertical and horizontal polarization channel has good linearity relative to sea surface temperature,which can be used for sea surface temperature inversion.( 2) The changes in the brightness temperature of 23. 8 GHz vertical and horizontal polarization channel are the largest relative to the rate of atmospheric water vapor content changes,which is mainly used for atmospheric water vapor content retrieval.( 3) Vertical and horizontal polarization channels at 37 GHz have relatively obvious characterization relative to cloud liquid water content,which could be used to cloud liquid water content inversion.( 4) The brightness temperatures of vertical polarization and horizontal polarization channel have good linearity retrieval to wind speed at a low observation frequency,which is used for sea surface wind speed inversion.( 5)When the wind direction changes,the brightness temperature channels of the third and fourth Stokes channels exhibit obvious inverted fluctuation characteristics,which can be used for sea surface wind direction inversion.( 6) The fluctuation with wind direction is completely covered in the real background field at the vertical and horizontal polarization channels,but the third and fourth Stokes channel observations can still characterize wind direction changes.( 7) The sensitivity of the third and fourth Stokes channels to other environmental parameters is much lower than the sensitivity to sea surface wind speed and wind direction,which cannot be used for inversion of other environmental parameters.( 8) The third and fourth Stokes channels for sea surface wind speed are also highly sensitive. Under a high wind speed condition,the actual measured brightness temperature of the third and fourth Stokes channels is large,which indicates that the measurement includes strong wind vector signals. Sea surface wind retrieval accuracy is better under high wind conditions compared with that under low wind speed conditions.( 9) In the 0° ± 30°,180° ±30° range,the brightness temperature measured value of the third and fourth Stokes channels is small,and the noise signal influence to wind is large. Thus,the retrieval accuracy of wind directions decreases in those ranges,and retrieval results appear fuzzy.( 10) In the actual measurement,the wind direction signal from the third and fourth Stokes channels is subject to interference from other environmental factors to some extent,which makes retrieving the sea surface wind direction difficult. The conclusions from sensitivity analysis could provide support to the independent development of China to design a polarimetric microwave radiation channel,select an environmental parameter inversion channel,and propose an environmental parameter inversion algorithm. Moreover,this study establishes a foundation to improve the accuracy of surface wind vector retrieval by removing adverse effects caused by atmospheric water vapor content and cloud liquid water content.
出处 《遥感学报》 EI CSCD 北大核心 2015年第3期375-390,共16页 NATIONAL REMOTE SENSING BULLETIN
基金 国家自然科学基金青年基金(编号:41306187)
关键词 全极化微波辐射计 全极化 敏感性分析 敏感度 海面风场 海面温度 polarimetrie microwave radiometer, polarization, sensitivity analysis method, sensitivity, sea surface wind, sea surface temperature
  • 相关文献

参考文献13

  • 1Bettenhausen M, Anguelova M and Smith C. 2005. A forward model Windsat Physically-based retrieval algorithm. Proceedings of SPIE: 5656.
  • 2Gaiser P W, Twarog E M, Li L, St Germain K M, Poe G A, Purdy W, Jelenak Z, Chang P S and Connor L. 2004. The WindSat space borne polarimetric microwave radiometer: sensor description and mission overview//Proceedings of the IEEE International on Geo- science and Remote Sensing Symposium, IGARSS'04. Anchorage AK: IEEE: 374 DOI: 10. ll09/IGARSS. 2004. 1369039].
  • 3李磊.建设项目技术经济评价敏感性分析[J].改革与开放,2010(12X):67-67. 被引量:6
  • 4刘璟怡,王振占,殷晓斌,姜景山.一种针对Windsat极化辐射计的海面风场反演方法[J].遥感技术与应用,2007,22(2):210-215. 被引量:5
  • 5刘璟怡,王振占,殷晓斌,姜景山.基于全极化微波辐射计WindSat亮温数据的海面风场反演[J].高技术通讯,2008,18(5):519-524. 被引量:6
  • 6Johnson J T. 2006. An efficient two-scale model for the computation of thermal emission and atmospheric reflection from the sea surface. IEEE Transactions on Geoscience and Remote Sensing, 44 (3) : 560 - 568 [ DOI : 10.1109/TGRS. 2005. 855999 ].
  • 7Monahan E C and O'muircheartaigh Iognaid G. 1986. Whitecaps and the passive remote sensing of the ocean surface. International Journal of Remote Sensing, 7 (5): 627 - 642 [ DOI: 10. 1080/ 01431168608954716 ].
  • 8Smith P M. 1988. The emissivity of sea foam at 19 and 37 GHz. IEEE Transactions on Geoscience Remote Sensing, 26 (5): 541 -547 [DOI: 10.1109/36. 7679].
  • 9Rose L A, Asher W E, Reising S C, Gaiser P W, St Germain K M, Dowgiallo D J, Horgan K A, Farquharson G and Knapp E J. 2002. Radiometric measurements of the microwave emissivity of foam. IEEE Transactions on Geoscience and Remote Sensing, 40 (12): 2619 - 2625 [DOI : 10.1109/TGRS. 2002. 807006 ].
  • 10Wentz F J and Meissner T. 1998. Algorithm theoretical basis document: AMSR ocean algorithm. Remote Sensing Systems, Santa Rosa, CA, RSS Tech. Report, 110398. Santa Rosa, CA.

二级参考文献26

  • 1Joel T Johnson.An Efficient Two-Scale Model for the Computation of Thermal Emission and Atmospheric Reflection from the Sea Surface[J].IEEE Trans Geosci and Remote Sensing,2006,44(3):560-568.
  • 2JPL.Windsat Data Products users' Manual[R].Version 3.0,January,2006.
  • 3Monahan E C,O'muircheartaigh Iognaid G.Whitecaps and the Passive Remote Sensing of the Ocean Surface[J].Int J Remote Sensing,1986,7(5):627-642.
  • 4Ellison W,Balana A,Delbos G,et al.New Permittivity Measurements of Sea Water[J].Radio Sci,1998,33(C3):639-648.
  • 5Wilheit T T.A Model for the Microwave Emissivity of the Ocean's Surface as A Function of Wind Speed[J].IEEE Trans Geosci Electronics,1979,GE-17(4):244-249.
  • 6Piepmeier J R,Abin J Gasiewski.High-resolution Passive Polarimetric Microwave Mappping of Ocean Surface Wind Vector Fields[J].IEEE Trans Geosci and Remote Sensing,2001,39(3):606-622.
  • 7Wentz F J.AMSR Ocean Algorithm,Remote Sensing System[R].Version 2,RSS Tech.Report 110398,1999.
  • 8Liebe H J,Hufford G A,Cotton M G.Propagation Modeling of Moist Air and Suspended Water/ice Particles at Frequencies Below 1000 GHz[A].In AGARD 52nd Specialists Meeting of the Electromagnetic Wave Propagation Panel[C].Palma de Mallorca,Spain,1993,1-10.
  • 9Yueh S H.Modeling of Wind Direction Signals in Polarimetric Sea Surface Brightness Temperatures[J].IEEE Trans Geosci and Remote Sensing,1997,35(6):1400-1418.
  • 10Piepmeier J R, Gasiewski A J. High-resolution passive polarimetric microwave mapping of ocean surface wind vector fields. IEEE Trans Geosci Remote Sens, 2001, 39(3): 606- 622

共引文献14

同被引文献19

引证文献5

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部