期刊文献+

异源遥感影像融合的辐射分辨率规范化方法 被引量:3

Standardization of Radiation Resolution for Fusion of Multi-sensor Remote Sensing Images
原文传递
导出
摘要 遥感影像融合算法,在增强多光谱影像空间分辨率的同时,可实现影像间的信息互补,提高遥感影像的解译能力。异源影像的融合受影像间配准精度及其在时相、空间分辨率和辐射分辨率之间差异的影响,而不同辐射分辨率对异源遥感影像融合所产生的影响及其纠正方法还缺乏深入的研究。为此,本文提出了异源影像融合的辐射分辨率规范化方法。该方法在统一像元值量化区间的基础上,将其乘以相同的比例系数转换到更高的辐射分辨率的量化区间,以减小融合过程由于数据位数取舍而引起的影像信息丢失。研究表明:本文所提出的辐射分辨率规范化方法的取整融合或以实数形式融合,其结果几乎没有差别;而其他转换方法的取整结果均较实型结果差。由于直接采用反射率值进行融合会使其结果产生严重的光谱失真,因此,应采用辐射分辨率规范化方法将反射率值进行转换后再做融合。 Today, an abundant supply of remote senseing data with various spatial, radiative and spectral resolu- tions from multi-platforms has provided rich sources of information for scientific research. In order to overcome the limitation of a particular type of remote sensing data in application, and take the full advantage of other re- mote sensing data, image fusion technique has been frequently used to enhance the resolution of remote sensing data and perform scale transformation among images obtained from different remote sensing platforms. A proper image fusion algorithm can not only improve the refinement of details of a low-resolution multispectral image, but also preserve its spectral information. Moreover, it can utilize the complementary information, reduce the data redundancy, and enhance the interpretation ability of the images. The fusion result is influenced by many factors, such as image fusion algorithm, seasonal difference, registration error, spatial and radiation resolution difference, etc. The images used in this study have different radiation resolutions, including 8 bit, 11 bit and 16 bit. In order to reduce the influence of differences in the radiation resolution and in the resultant data dynamic range on image fusion, this paper proposed a method for the standardization of radiation resolution. Based on the unification of quantization intervals for digital number, the transformation from low to high radiation variability through multi- plication of a same proportion coefficient can reduce the loss of image information, which is caused by data bits conversion in the fusion process. The results show that the proposed standardization method of radiation resolu- tion can be applied to remote sensing data with different quantization intervals and is easy to be programmed. When using the proposed standardization method for fusing different images, the resultant fusion results are al- most identical to each other, either using real number value or integer value. Whereas, when using other quantiza- tion methods, the resultant fusion image with real number value is generally better than that with integer value. The standardization of radiation resolution is a necessary step for image fusion when using reflectance-based im- ages, because all image fusion algorithms will cause a serious spectral distortion to the fusion results.
出处 《地球信息科学学报》 CSCD 北大核心 2015年第6期713-723,共11页 Journal of Geo-information Science
基金 福建省自然科学基金项目(2012J01171 2012J01169) 国家科技支撑计划项目(2013BAC08B01-05) 海岛(礁)测绘技术国家测绘地理信息局重点实验室基金(2010B09)
关键词 影像融合 辐射分辨率规范化 量化区间 异源影像 光谱保真度 image fusion standardization of radiation resolution quantization interval
  • 相关文献

参考文献27

  • 1Carper W J, Lillesand T M, Kiefer R W. The use of intensity-hue-saturation transformations for merging SPOT panchromatic and multispectral image data[J]. Photogrammetric Engineering & Remote Sensing, 1990,56(4):459-467.
  • 2Tu T M, Huang P S, Hung C L, et al. A fast intensity-hue-saturation fusion technique with spectral adjustment for IKONOS imagery [J]. IEEE Geoscience and Remote Sensing Letters, 2004,1(4):309-312.
  • 3Zhang Y, Hong G. An IHS and wavelet integrated approach to improve Pan-Sharpening visual quality of natural colour IKONOS and QuickBird images[J]. Information Fusion, 2005,6:225-234.
  • 4Choi M. A new intensity-hue-saturation fusion approach to image fusion with a tradeoff parameter[J]. IEEE Transaction on Geoscience and Remote Sensing, 2006,44(6):1672-1682.
  • 5Tu T M, Cheng W H, Chang C P, et al. Best tradeoff for high-resolution image fusion to preserve spatial details and minimize color distortion[J]. IEEE Geoscience and Remote Sensing Letters, 2007,4(2):302-306.
  • 6Rahmani S, Strait M, Merkurjev D, et al. An adaptive IHS Pan-Sharpening method [J]. IEEE Geoscience and Remote Sensing Letters, 2010,7(4):746-750.
  • 7Liang C C, Tsai W H. Image fusion with no gamut problem by improved nonlinear IHS transforms for remote sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014,52(1):651-663.
  • 8Pohl C, Genderen J L Van. Multisensor image fusion in remote sensing: Concepts, methods and applications[J]. International Journal of Remote Sensing, 1998,19(5):823-854.
  • 9Liu J G. Evaluation of Landsat-7 ETM+ panchromatic band for image fusion with multispectral bands[J]. Natural Resources Research, 2000,9(4):269-276.
  • 10Chavez P S, Sides S C, Anderson J A. Comparison of three different methods to merge multiresolution and multispectral data: Landsat TM and SPOT panchromatic[J]. Photogrammetric Engineering and Remote Sensing, 1991,57(3):295-303.

二级参考文献54

  • 1徐涵秋.基于SFIM算法的融合影像分类研究[J].武汉大学学报(信息科学版),2004,29(10):920-923. 被引量:18
  • 2李存军,刘良云,王纪华,王人潮.两种高保真遥感影像融合方法比较[J].中国图象图形学报(A辑),2004,9(11):1376-1385. 被引量:97
  • 3徐涵秋.Landsat 7 ETM+影像的融合和自动分类研究[J].遥感学报,2005,9(2):186-194. 被引量:52
  • 4邢帅,谭兵,徐青,李建胜.基于复数小波变换的遥感图像融合新算法[J].武汉大学学报(信息科学版),2007,32(1):75-77. 被引量:13
  • 5G Qu,D Zhang,P Yan.Information measure for performance of image fusion [J].Electronics Letters,2002;38(7):313-315.
  • 6L Wald,T Ranchin,M Mangolini.Fusion of satellite images of different spatial and spectral resolutions:assessing the quality of resulting images[J].Photogammetric Engineering & Remote Sensing, 1997 ; 63 (6) : 691-699.
  • 7YESOU H, BESNUS Y, ROLET Y. Extraction of Spectral Information from Landsat TM Data and Merger with SPOT Panchromatic Imagery--A Contribution to the Study of Geological Structures [J]. ISPRS Journal of Photogrammetry and Remote Sensing. 1993, 48(5): 23-36.
  • 8HAYDAN R, DALKE G W, HENKEL J, et al. Applications of the HIS Colour Transform to the Processing of Multi-sensor Data and Image Enhancement[A].Proceedings of 1st Thematic Conference: International Symposium on Remote Sensing and Arid and Semi-arid Lands[C], Cairo: 1982,559-616.
  • 9VRABEL J. Multispectral Imagery Band Sharpening Study[J]. Photogrammetric Engineering & Remote Sensing, 1996, 62(9): 1 075-1 083.
  • 10SHETTIGARA V K. A Generalized Component Substitution Technique for Spatial Enhancement of Multispectral Images Using a Higher Resolution Data Set [J]. Photogrammetric Engineering and Remote Sensing. 1992, 58(5): 561-567.

共引文献182

同被引文献17

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部