期刊文献+

从铜阳极泥分银渣低温碱性熔炼浸出液中回收锑、锡的研究 被引量:8

Recovering Antimony and Tin from Leaching Solution of Sliver Separated Residue after Low-temperature Alkaline Reduction Smelting
原文传递
导出
摘要 铜阳极泥分银渣经低温碱性还原熔炼浸出后,获得含锑、锡和砷的浸出液,浸出液中锑通过双氧水氧化沉淀的方法直接制取锑酸钠,沉锑后液中的锡通过调节p H的方式生成沉淀分离。沉锑阶段考察了双氧水加入量、反应时间、双氧水浓度对沉淀率的影响,最优条件为:加入两倍理论量的双氧水,双氧水浓度为10%,反应2 h,锑沉淀率达99%,粗锑酸钠经过精制后符合一级电子工业标准HG/T 3254-2001。分离回收锡最佳p H=8,锡沉淀率达到98%。该方法有效的分离回收了分银渣中的锑和锡。 After the processing of the sliver separated residues originated from copper anode slime by low temperature alkaline smelting and leaching, the obtained solution contained Sb, Sn and As. Antimony in the solution was precipitated by H2O2 to get sodium antimonate. Tin in the sodium-precipitated solution was recovered as precipitate by adjust pH value. The effects of H2O2 dosage, reaction time and H2O2 concentration on the precipitation rate were studied in the antimony precipitation process. The optimal conditions are as follows: addition of two times of theoretical amount of H2O2, H2O2 concentration of 10% and reaction time of 2 hours. The precipitation of antimony is 99%. After refining process, the final product is in accordance with the first-class Electronic Industry Standard (HG/T 3254-2001 ). The optimum pH value for tin recovery is 8, at which the recovery reaches to 98%. By this method, antimo- ny and tin are efficiently separated and recovered from the silver separated residue.
出处 《金属材料与冶金工程》 CAS 2015年第1期44-49,共6页 Metal Materials and Metallurgy Engineering
关键词 铜阳极泥 分银渣 锑酸钠 氢氧化锡 copper anode slime sliver separated residue sodium antimonate tin hydroxide
  • 相关文献

参考文献22

  • 1梁君飞,柳松,谢西京.铜阳极泥处理工艺的研究进展[J].黄金,2008,29(12):32-38. 被引量:28
  • 2夏彬.铜阳极泥稀贵金属回收工艺及优化[J].铜业工程,2011(3):34-37. 被引量:18
  • 3靳冉公,王云,李云,孙留根.碱性硫化钠浸出含锑金精矿过程中金锑行为[J].有色金属(冶炼部分),2014(7):38-41. 被引量:21
  • 4白猛,郑雅杰,刘万宇,张传福.硫化砷渣的碱性浸出及浸出动力学[J].中南大学学报(自然科学版),2008,39(2):268-272. 被引量:31
  • 5Brostow W, Gahutishvili M, Gigauri R, et al. Separation of natural trivalent oxides of arsenic and antimony [J]. Chemical Engineering Journal, 2010, 159 (3): 24-26.
  • 6Bala P, Achimovi O M. Selective leaching of antimony and arsenic from mechanically activated tetrahedrite, jamesonite and enargite[J]. International Journal of Mineral Processing, 2006, 81 (1): 44- 50.
  • 7Ubaldini S, Veglio F, Fornari P, et al. Process flow-sheet for gold and antimony recovery from stibnite[J]. Hydrometallurgy, 2000, 57 (3): 187-199.
  • 8Li Y H, Liu Z H, Li Q H, et al. Removal of arsenic from Waelz zinc oxide using a mixed NaOH-Na~ leach [J]. Hydrometallurgy, 2011, 108 (3/4) : 165-170.
  • 9Celep O, Alp I, Deveci H. Improved gold and silver extraction from a refractory antimony ore by pretreatment with alkaline sulphide leach [J]. Hydrometallurgy, 2011, 105 (3/4) : 234-239.
  • 10Samuel A A, Sandstrom A. Selective leaching of arsenic and antimony from a tetrahedrite rich complex[J]. Minerals Engineering, 2010, 23 (15): 1 227-1 236.

二级参考文献129

共引文献180

同被引文献93

引证文献8

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部