期刊文献+

以通量线法为初值的直流线路离子流场计算优化 被引量:3

Optimization of Ion Flow Field Calculation for HVDC Transmission Line by Using Calculation Results of Flux Tracing Method as Initial Charge Densities for Finite Element Method
下载PDF
导出
摘要 输电走廊的电磁环境是直流输电线路设计与建设中需要考虑的关键问题之一。导线电晕产生的空间电荷形成了离子流场,其求解方法主要是通量线法和有限元数值求解方法。针对通量线法计算速度快而在空间中的结果不甚理想,以及有限元方法计算精度较高而计算效率较低的问题,文章将2种方法的优势结合起来,使用通量线法的计算结果作为有限元法求解的空间节点电荷初值,计算结果与实测结果以及单纯有限元的计算结果吻合很好,在不牺牲有限元法在空间和地面的计算精度的前提下,求解速度和效率得到了提高。使用该方法,计算了输电线路周围的等势线分布,明确了传统通量线法在计算空间电场时由于Deutsch假设所引起的误差。 The electromagnetic environment of power transmission corridor is one of the key problems to be considered in the design and construction of HVDC transmission projects. The space charge caused by conductor corona forms ion flow field and the methods to solve the ion flow field are mainly the flux tracing method (FTM) and the finite element method (FEM), although the calculation speed of the former is high but its calculation results in the space is not satisfied, and the calculation results by the latter are of high accuracy but the calculation efficiency is dissatisfied. The authors combine the superiorities of both methods that is, the calculation result by FTM is used as the initial charge densities at all mesh nodes for FEM, and the final calculation results well coincide with the measured results and the results obtained by FEM only; under the premise of not affecting the calculation accuracy of FEM in the space and on the ground, both solving speed and efficiency are improved. The distributions of equipotential lines around the transmission line are calculated and the error of the calculation of space electric field bY traditional FTM due to the Deutsch's assumption is clarified.
出处 《电网技术》 EI CSCD 北大核心 2015年第6期1546-1550,共5页 Power System Technology
基金 国家自然科学基金项目(51322703)~~
关键词 离子流场 合成电场 Deutsch假设 有限元法 空间电荷 ion flow field total electric field Deutsch'sassumption finite element method space charge
  • 相关文献

参考文献20

  • 1Sarma M P. Corona performance of high-voltage transmission lines[M]. England: Research Studies Press Ltd., 2000: 179-211.
  • 2Sarma M P, Janischewskyj W. Analysis of corona losses on DC transmission lines, part i: uniPolar lines[J]. IEEE Transactions on Power Apparatus and Systems, 1969, PAS-88(5): 718-731.
  • 3Sarma M P, Janischewskyj W. Analysis of corona losses on DC transmission lines, part ii: bipolar lines[J]. IEEE Transactions on Power Apparatus and Systems, 1969, PAS-88(10): 1476-1491.
  • 4Maruvada P S. Electric field and ion current environment of HVDC transmission lines: comparison of calculations and measurements[J]. IEEE Transactions on Power Delivery, 2012, 27(1): 401-410.
  • 5Janisehewskyj W, Cela G. Finite element solution for electric fields of coronating DC transmission lines[J]. IEEE Transactions on Power Apparatus and Systems, 1979, PAS-98(3): 1000-1012.
  • 6Takuma T, Ikeda T, Kawamoto T. Calculation of ion flow fields of HVDC transmission lines by the finite element method[J]. IEEE Transactions on Power Apparatus and Systems, 1981, PAS-100(12): 4802-4810.
  • 7Takuma T, Kawamoto T. A very stable calculation method for ion flow field of HVDC transmission lines[J]. IEEE Transactions on Power Delivery, 1987, 2(1): 189-198.
  • 8杨勇,陆家榆,鞠勇.基于Deutsch假设法和有限元法的高压直流线路地面合成电场对比分析[J].电网技术,2013,37(2):526-532. 被引量:22
  • 9甄永赞,崔翔,卢铁兵,周象贤,罗兆楠.高压直流输电线下合成电场的有限元快速算法[J].中国电机工程学报,2011,31(18):113-118. 被引量:7
  • 10Abdel-Salam M, A1-Ham0uz Z. A fmite-element analysis of bipolar ionized field[J]. IEEE Transactions on Industry Applications, 1995, 31(3): 477-483.

二级参考文献165

共引文献162

同被引文献25

引证文献3

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部