期刊文献+

IRA码预检测折线修正译码算法设计

Algorithm design of early detection and offset polyline decoding for IRA codes
下载PDF
导出
摘要 不规则重复累积码(IRA)的译码通常采用置信传播(BP)译码算法,然而BP译码算法需进行双曲正切函数计算,复杂度高,不利于硬件实现。为此,提出一种基于分段函数修正和预检测机制结合的译码算法,通过对折线近似译码算法进行非均匀误差补偿,使其性能接近BP算法;同时引入预检测机制对校验节点信息传递进行预检测,判断出对后续迭代影响微小的对数似然信息,并将其移出迭代循环,从而减少计算量。仿真结果表明,该算法通过分段函数修正近似双曲正切函数、引入预检测机制能大大降低运算复杂度,并且具有接近BP算法的译码性能。 Irregular Repeat Accumulate (IRA) codes' decoding usually adopts Belief Propagation (BP) decoding algorithm, but BP decoding algorithm needs hyperbolic tangent calculation, so its hardware implementation is very difficult because of the high complexity. A decoding algorithm combining the early detection mechanism and offset polyline was put forward. Its performance would approach to BP algorithm via non-uniform error compensation for polyline approximation decoding algorithm. And the early detection method was introduced which observed the transmitted information of check nodes in advance, judged the lines' log-likelihood value which had negligible influence on the next iteration and moved it out of the iteration. So the computational complexity of next iterations was reduced. The simulation results show that the proposed algorithm greatly reduces the computational complexity through the offset polyline approximating the hyperbolic tangent, and the decoding performance is close to BP algorithm.
出处 《计算机应用》 CSCD 北大核心 2015年第6期1541-1545,共5页 journal of Computer Applications
基金 国家自然科学基金资助项目(61472443 61302153)
关键词 重复累计码 置信传播译码算法 折线近似译码算法 误差补偿 预检测机制 Repeat Accumulate code (RA) Belief Propagation (BP) decoding algorithm polyline approximation decoding algorithm error compensation early detection mechanism
  • 相关文献

参考文献13

  • 1SHANNON C E.A mathematical theory of communication[J].The Bell System Technical Journal,1948,27(6):379-423.
  • 2DIVSALAR D,JIN H,MCELLECE R J.Coding theorems for Turbo-like codes[C]//Proceedings of the 36th Annual Allerton Conference on Communication Control and Computing.Piscataway:IEEE,1998,9:201-210.
  • 3JIN H,KHANDEKAR A,KH A,et al.Irregular repeat-accumulate codes[C]//Proceedings of the 2nd International Symposium on Turbo Codes and Related Topics.Piscataway:IEEE,2000:1-8.
  • 4FOSSORIER M P C,MIHALJEVIC M,IMAI H.Reduced complexity iterative decoding of low-density parity check codes based on belief propagation[J].IEEE Transactions on Communications,1999,47(5):673-680.
  • 5ABRARDO A,BELLESCHI M,DETTI P,et al.A min-sum approach for resource allocation in communication systems[C]//Proceedings of the 2011 IEEE International Conference on Communications.Piscataway:IEEE,2011:1-6.
  • 6高宏峰,许宗泽,吴援明.IRA码简化译码算法的研究[J].电子科技大学学报,2005,34(1):40-43. 被引量:5
  • 7HU Z,LIU H.A low-complexity LDPC decoding algorithm for hierarchical broadcasting:design and implementation[J].IEEE Transactions on Vehicular Technology,2013,62(4):1843-1849.
  • 8LEE H-C,UENG Y-L.LDPC decoding scheduling for faster convergence and lower error floor[J].IEEE Transactions on Communications,2014,62(9):3104-3113.
  • 9KIM M H,PARK T D,KIM C S et al.An FPGA design of low power LDPC decoder for high-speed wireless LAN[C]//Proceedings of the 2010 12th IEEE International Conference on Communication Technology.Piscataway:IEEE,2010:1460-1463.
  • 10CHEN X,SHEN Y.Research of RA coding algorithm based on AWGN channel[J].Journal of Networks,2012,7(4):605-612.

二级参考文献15

  • 1Jin H, Khandekar A, and MeEliece R. Irregular repeataccumulate codes[C]. 2nd International Symposium on Turbo Codes and Related Topics, Brest, France, September 4-7, 2000: 1-8.
  • 2Jin H, Khandekar A, McEliece R. Irregular repeat-accumulate codes[C]. Proc 2nd International Symposium on Turbo codes and Related Topics, Brest, France, 2000. 1-8?A.
  • 3Fossorier M P C, Mihaljevic T, Dholakia A. Reduced complexity iterative decoding of low density parity check codes based on belief propagation[J]. IEEE Trans on Communication, 1999, 47(5): 673-680?A.
  • 4Kang S, Chua L. A global representation of multidimensional piecewise-linear functions with partitions[J]. IEEE Trans Circuits System, 1978, 25 (11): 938-940?A.
  • 5Manis G, Papakonstantinou G, Tsanakas P. Optimal piecewise linear approximation of digitized curves[C]. 13th International conference on DSP, Santorini, Greece, 1997. 1 079-1 081.
  • 6Catunda S, Saavedra O, FonsecaNeto J, et al. Look-up table and breakpoints determination for piecewise linear approximation function using evolutionary computation[C]. Instrumentation and measurement technology conference,Vail, Colorado, USA, 2003. 435-440.
  • 7Hogarth, M. P.; Hards, G. A. Platinum Metals Rev., 1996, 40:150
  • 8Fujiwra, N; Friedrich, K. A.; Stimming, U. J. Electroanal. Chem.,1999, 472:120
  • 9Oliveira, N. A.; Giz, M. J.; Perez, J.; Ticianelli, E. A.; Gonzalez,E. R. J. Electrochem. Soc.,2002, 149(3): A272
  • 10Delime, F.; Leger, J. M.; Lamy, C. J. Appl. Electrochem., 1998,28:27

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部