期刊文献+

基于结构元理论的复模糊值和函数及泰勒级数

Research on sum function and Taylor series of complex fuzzy value based on structural element theory
下载PDF
导出
摘要 借助于结构元理论给出了复模糊值和函数定义及级数存在和函数的充要条件,对和函数的连续性、可微性及可积性进行了探讨,得到了相关的定理并给出证明.在定义结构元线性生成的泰勒级数和麦克劳林级数基础上,给出了复模糊值函数展成泰勒级数的充要条件.所得结论对进一步完善模糊复分析理论将起到一定的促进作用. The definition of sum function of complex fuzzy value and the necessary and sufficient condition of sum function existence of series was given on the base of structural element theory. The continuity, differentiability and integration of the sum function was discussed, and related theory was proposed and proved. The necessary and sufficient conditions of complex fuzzy value functions developing into Taylor series was given on the base of the definition of Taylor series and Macuaurin series which are linely generated by structural element. These conclusions will promote the further development of the fuzzy complex analysis theory.
出处 《高师理科学刊》 2015年第5期7-10,共4页 Journal of Science of Teachers'College and University
基金 黑龙江省教育厅科研项目(12531577)
关键词 模糊结构元 复模糊值函数 泰勒级数 fuzzy structural element complex fuzzy value functions Taylor series
  • 相关文献

参考文献10

二级参考文献18

共引文献143

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部