期刊文献+

离散合取聚合算子的迁移性

Migrativity of Discrete Conjunctive Aggregation Operations
下载PDF
导出
摘要 主要研究了有限链上合取聚合算子的迁移性问题;讨论了可分三角模关于取小三角模和LukasieLwicz三角模的α-迁移性;研究了含加法生成子的合取聚合算子类关于取小三角模和LukasieLwicz三角模的α-迁移性,其中主要利用了加法生成子来刻画此类中元素的迁移性。结果表明:(1)可分三角模是关于取小三角模的α-迁移当且仅当α是其幂等元;(2)可分三角模是关于LukasieLwicz三角模的α-迁移当且仅当其是LukasieLwicz三角模;(3)含加法生成子的合取聚合算子类中的元素是关于取小三角模和LukasieLwicz三角模的α-迁移的条件。 This paper mainly solves the problem about the migrativity of conjunctive aggregation operations on a finite chain. Firstly, this paper discussesα-migrativity with respect to minimum triangular norm and?ukasiewicz triangular norm of divisible triangular norms. Then, this paper studiesα-migrativity with respect to minimum triangular norm and?ukasiewicz triangular norm of conjunctive aggregation operations in a class which have an additive generator. This paper mainly uses additive generators to depict the migrativity of the element in this class. The results show fol-lowing propositions: (1) Divisible triangular norm is said to be α-migrativite with respect to minimum triangular norm if and only ifαis an idempotent element. (2) Divisible triangular norm is said to beα-migrativite with respect to?ukasiewicz triangular norm if and only if it is?ukasiewicz triangular norm. (3) The element in conjunctive aggre-gation operations which have an additive generator is the condition ofα-migrativity with respect to minimum trian-gular norm and?ukasiewicz triangular norm.
出处 《计算机科学与探索》 CSCD 北大核心 2015年第6期756-760,共5页 Journal of Frontiers of Computer Science and Technology
基金 国家自然科学基金No.61174099 高等学校博士学科点专项科研基金No.20120131110001~~
关键词 离散合取聚合算子 迁移性 有限链 加法生成子 三角模 discrete conjunctive aggregation operations migrativity finite chain additive generator triangular norm
  • 相关文献

参考文献15

  • 1Fodor J, Rudas I J. On continuous triangular norms that are migrative[J]. Fuzzy Sets and Systems, 2007, 158(15): 1692-1697.
  • 2Fodor J, Rudas I J. An extension of the migrative property for triangular norms[J]. Fuzzy Sets and Systems, 2011, 168 (1): 70-80.
  • 3Durante F, Sarkoci P. A note on the convex combinations of triangular norms[J]. Fuzzy Sets and Systems, 2008, 159(1): 77-80.
  • 4Bustince H, De Baets B, Femndez J, et al. A generalization of the migrativity property of aggregation functions[J]. Infor- mation Sciences, 2012, 191: 76-85.
  • 5Bustince H, Montero J, Mesiar R. Migrativity of aggrega- tion functions[J]. Fuzzy Sets and Systems, 2009, 160(6): 766-777.
  • 6Fodor J, Rudas I J. On some classes of aggregation fimctions that are migrative[C]//Proceedings of the Joint 2009 Interna- tional Fuzzy Systems Association World Congress and 2009 European Society of Fuzzy Logic and Technology Confer- ence, Lisbon, Portugal, Jul 20-24, 2009: 653-656.
  • 7Rudas I J, Fodor J. An overview of migrative triangular norms[C]//Proceedings of the 10th WSEAS International Conference on Artificial Intelligence, Knowledge Engineering and Data Bases. Stevens Point, USA: WSEAS, 2011: 255-262.
  • 8Mesiar R, Bustince H, Fernandez J. On the a-migrativity of semicopulas, quasi-copulas, and copulas[J]. Information Sci- ences, 2010, 180(10): 1967-1976.
  • 9Durante F, Ricci R G. Supermigrative semi-copulas and triangular norms[J]. Information Sciences, 2009, 179(15): 2689-2694.
  • 10Mayor G, Monreal J. Additive generators of discrete con- junctive aggregation operations[J]. IEEE Transactions on Fuzzy Systems, 2007, 15(6): 1046-1052.

二级参考文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部