期刊文献+

石墨烯/血红蛋白复合薄膜的制备、表征及应用

Preparation,characterization and application of graphene/hemoglobin composite film
下载PDF
导出
摘要 基于静电吸附作用,将荷正电的血红蛋白(Hb)与荷负电的聚丙烯酸修饰的石墨烯(PAA-g-Gr)层层自组装制备了多层复合薄膜({PAA-g-Gr/Hb}n),并将其用于修饰玻碳电极(GCE),从而实现对过氧化氢(H2O2)的检测。利用傅里叶红外光谱(FT-IR)和紫外-可见吸收光谱(UV-Vis)对复合薄膜制备过程进行了考察;利用场发射扫描电镜(FESEM)考察了复合薄膜的表面形貌;通过交流阻抗技术(EIS)探究了膜材料的电化学性质;利用循环伏安法(CV)以及计时电流法(CA)考察了复合薄膜修饰电极对H2O2的电化学响应性能。结果表明,该方法制备的复合薄膜对H2O2的线性检测范围为1×10-6~1×10-4 mol/L(RSD=0.999),检测下限为8×10-7 mol/L。 Using positively charged hemoglobin (Hb) and negatively charged polyacrylic acid (PAA) stabilized gra- phene (PAA-g-Gr) as building bloCks,an uniform {PAA-g-Gr/Hb},composite film on the glassy carbon electrode was pre- pared based on layer-by-layer (LBL) self-assembly technology. The composite film forming process were investigated by fourier transform infrared spectroscopy (FT-IR) and ultraviolet-visible absorption spectrum (UV-Vis). The surface mor- phology of {PAA-g-Gr/Hb}n was observed by field emission scanning electron microscopy (FE-SEM). The electrocatalytic response of {PAA-g-Gr/Hb}n modified glassy carbon electrode toward hydrogen dioxide (H2 02 ) is investigated by cyclic voltammetry (CV) and ehronoamperometry (CA). The results showed that the { PAA-g-Gr/Hb}n exhibited a wide linear response range of 1 × 10,6 ~ 1 ×10-4 mol/L with a correlation coefficient of 0. 999 for the detection of H2O2. And the detec- tion limit (S/N= 3) was determined to be 8×10^-7 mol/L.
出处 《化工新型材料》 CAS CSCD 北大核心 2015年第5期61-64,共4页 New Chemical Materials
基金 国家自然科学基金(21174056,51103064)
关键词 层层自组装 石墨烯 血红蛋白 复合薄膜 Layer-by-layer self-assembly, graphene, hemoglobin, composite film
  • 相关文献

参考文献18

  • 1石瑞丽,陶菡,张义明,韩丽.血红蛋白在碳纳米管/离子液体/纳米金修饰电极上的电化学特性及对过氧化氢的电催化分析[J].化工新型材料,2011,39(10):91-94. 被引量:3
  • 2Kariz S, Petrovie D. [J]. Balkan Journal of Medical Genetics, 2011,14(1) :3-9.
  • 3Hu S, Cao L, Sun Z, et al. [J]. Electroanalysis, 2012,24 (2) : 278-285.
  • 4Thiansilakul Y, Benjakul S, Park S, et al. [J]. Food Chemistry, 2012,132(2) :892-900.
  • 5Gu H-Y, Yu AM, Chen H-Y. [J]. Journal of Electroanalytical Chemistry, 2001,516(1) : 119-126.
  • 6Liu S,Dai Z, Chen H, et al. [J]. Biosensors and Bioelectronies, 2004,19(9) : 963-969.
  • 7Lu Z, Huang Q, Rusling J F. [J]. Journal of Electroanalytical Chemistry, 1997,423 (1) : 59-66.
  • 8Xu Y, Liu Z, Zhang X, et al. [J]. Advanced Materials, 2009,21 (12) : 1275-1279.
  • 9张伟娜,何伟,张新荔.石墨烯的制备方法及其应用特性[J].化工新型材料,2010,38(S1):15-18. 被引量:40
  • 10Stoller M D, Murali S, Quarles N, et al. [J]. Physical Chemistry Chemical Physics, 2012,14(10) : 3388-3391.

二级参考文献39

  • 1李玉平,曹宏斌,张懿.血红蛋白在碳纳米管修饰碳糊电极上的直接电化学行为[J].物理化学学报,2005,21(2):187-191. 被引量:21
  • 2Li R X. Green solvent-the synthesis and application of ionic liq- uid[M]. Beijing: Chemical Industy Press, 2003 : 20-21.
  • 3Zhao Guangchao, Zhang Li, Wei Xianwen, et al. Myoglobin on multi-wailed carbon nanotubes modified electrode., direct elec- trochemistry and electrocatalydsis[J]. Electrochem Commun, 2003, 5(6): 825-829.
  • 4Sun H, Ma H Y, Hu N F. Bioelectrochem Bioenerg, 1999. 49.. 1-10.
  • 5Liu S Q, Dai Z H, Chen H Y,et al. Biosens Bioelectron,2004. 19:963-969.
  • 6Qiong Wang, Hao Tang, Oing}iXie, LiangTan, YouyuZhang, BiaomoLi, ShouzhuoYao. Room-temperature ionic liquids/ multi-walled carbon nanotubes/chitosan composite electrode for electrochemical analysis of NADH [J]. Electrochimica Acta, 2007,52:6630 -6637.
  • 7George P, Hanania O. [J]. Biochem J, 1953, 55(2):236-243.
  • 8Nassar A-E F, Willis W S, Rusling J F. [J]. Anal Chem, 1995, 67(14) :2386-2392.
  • 9Yang J, Hu N F. Bioelectrochera. Bioenerg. , 1999,48:117- 127.
  • 10Hamilton C E,Lomeda J R,Sun Z Z,et al.High-yield or-ganic dispersions of unfunctionalized graphene. Nano Letters . 2009

共引文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部