期刊文献+

牦牛CAV-3基因的克隆及其在牦牛和黄牛组织的表达分析

Cloning of CAV-3 in Yak and Analysis Its Expression in Yak and Cattle
下载PDF
导出
摘要 旨在对牦牛CAV-3基因进行克隆、生物信息学分析,并对其在牦牛组织中的表达规律进行初步研究。根据Gen Bank数据库中已知的黄牛CAV-3基因的m RNA序列并设计特异性引物,应用RT-PCR技术克隆牦牛CAV-3基因的编码区。运用生物信息学方法,分析并预测牦牛Caveolin-3蛋白的理化性质、疏水性、蛋白结构域以及蛋白质二级结构。通过半定量PCR技术检测CAV-3基因m RNA在牦牛和黄牛各组织中的表达;利用实时荧光定量PCR技术检测牦牛和黄牛肌肉组织中CAV-3基因m RNA表达水平。牦牛CAV-3的编码区全长631 bp,共编码151个氨基酸。CAV-3在牦牛肺、脾脏、肾脏、肝脏、卵巢组织中均不表达,仅在心脏和肌肉组织中表达,且在心脏组织的表达水平高于肌肉组织,CAV-3基因在黄牛各组织中的表达结果与牦牛一致。CAV-3基因在牦牛肌肉中的表达低于黄牛肌肉组织,但差异不显著(P>0.05)。 This study aims to clone, analyze bioinformatics and determine the expression pattern of CAV-3 gene in yak. A pair of special primers were designed according to released mRNA sequence of bovine CAV-3 in GenBank. A coding region sequence of yak CAV-3 was amplified by RT-PCR; the general physical and chemical properties, hydrophobicity, protein domains and protein secondary structures were systemically analyzed and predicted by bioinformatics techniques. The expression levels of CAV-3 mRNA in some organs of yak and cattle were detected by semi-quantitative PCR. Real-time PCR was employed to examine the expression levels of CAV-3 mRNA in yak and cattle muscles. The coding region sequence of CAV-3 gene in yak contains a complete ORF ( 631 bp ) which encoded 151 amino acids. CAV-3 mRNA expression in the heart and muscle was detected, but not in any other examined tissues, and its expression level in the heart was higher than in the muscle. The result in yak was consistent with that in cattle. Expression of CAV-3 gene in the yak muscle was less than in the cattle muscle, but not significantly ( P〉0.05 ) . The cloning and analysis of CAV-3 provided scientific basis for further study the function of CAV-3 gene in muscle development and muscle physiological process in the future.
出处 《生物技术通报》 CAS CSCD 北大核心 2015年第5期194-199,共6页 Biotechnology Bulletin
基金 现代农业(肉牛牦牛)产业技术体系专项(CARS-38) 甘肃甘南牧区"生产生态生活"保障技术集成与示范(2012AD13B05)
关键词 牦牛 Caveolin-3 克隆 表达分析 yak Caveolin-3 cloning expression analysis
  • 相关文献

参考文献18

  • 1Galbiati F, Razani B, Lisanti MP. Caveolae and caveolin-3 in muscular dystrophy [ J ] . Trends Mol Med, 2008, 7 ( 10 ) : 435- 441.
  • 2Qian LL. The research progress in caveolae and caveolin-3 [ J ] . Foreign Medical Sciences : Molecular Biology, 2002, 24 : 100-102.
  • 3Seherer PE, Lewis RY, Volonte D, et al. Cell-type and tissue-specific expression of caveolin-2 : Caveolins 1 and 2 co-localize and form a stable hetero-oligomeric complex in vivo [ J ] . J Biol Chem, 1997, 272 ( 46 ) : 29337-29346.
  • 4John H, Chidlow J, William C. Caveolae, caveolins, and cavins : complex control of cellular signaling and inflammation [ J ] . Cardiovasc Res, 2010, 86 ( 2 ) : 219-225.
  • 5Zhu Z, Li Y, Li K, et al. Molecular characterization and expression analysis of theporcine Caveolin-3 gene [ J ] . Biochem Biophys Res Commun, 2003, 346 ( 1 ) : 7-13.
  • 6Fanzanifa A, Musaro A, Stoppani E, et al. Hypertrophy and atrophy inversely regulate caveolin-3 expression in myoblasts [ J ] . Biochem Biophys Res Commun, 2007, 357 ( 1 ) : 314-318.
  • 7Le Lay S, Kurzchalia TV. Getting rid of caveolins : phenotypes of caveolin-deficient animals [ J ] . Biochim Biophys Acta, 2005, 1746 ( 3 ) : 322-332.
  • 8Shin DH, Kim JS, Kwon BS, et al. Caveolin-3 expression during early chicken development [ J ] . Brain Res Dev Brain Res, 2003, 141 ( 1- 2 ) : 83-89.
  • 9Carlson BM, Carlson JA, Dedkov EI, et al. Concentration of caveolin-3 at the neuro-muscular junction in young and old rat skeletal muscle fibers [ J ] . J Histochem Cytochem, 2003, 51 ( 9 ) : 1113-1118.
  • 10Kerzer HA, Schaart G, Tandon NN, et al. Subeellular immunolocalisation of fatty acid translocase ( FAT ) /CD36 in human type-1 and type-2 skeletal muscle fibres [ J] . Histoehem Cell Biol, 2004, 121 ( 2 ) : 101-107.

二级参考文献37

  • 1Samuel A Lee, Steven W, Sophien K, Austin F S Lee, Keith J , Brian W. An analysis of the Candida albicans genome database for soluble secreted proteins using computer-based prediction algorithms. Yeast, 2003, 20:595-610.
  • 2Harold T, Albert B, Jongbloed Jan D H, Sierd B, Jan Maarten Van Dijl. Signal peptide-dependent protein transport in Bacillus subtilis: a genome-based survey of the secretome. Microbiology and Molecular Biology Review, 2000, 64: 515-547.
  • 3Herrero E, M Torre A de la , Valentín E . Comparative genomics of yeast species: new insights into their biology. International Microbiology, 2003, 6:183-190.
  • 4Pugsley A P. The complete general secretory pathway in gram-negative bacteria. Microbiological Review, 1993, 57:50-108.
  • 5von Heijne G. How signal sequences maintain cleavage specific. Journal Molecular Biology, 1984, 173:243-251.
  • 6von Heijne G. The structure of signal peptides from bacterial lipoproteins. Protein Engineering, 1989, 2:531-534.
  • 7von Heijne G. Protein targeting signals. Current Opinion Cell Biology, 1990, 2:604-608.
  • 8on Heijne G. The signal peptide. Journal Membrane Biology, 1990, 115:195-201.
  • 9von Heijne G, Abrahmse′n L. Species-specific variation in signal peptide design. Implications for protein secretion in foreign hosts. FEBS Letter, 1989, 27:439-446.
  • 10Chen M, Nagarajan V. Effect of alteration of charged residues at the N termini of signal peptides on protein export in Bacillus subtilis. Journal Bacteriology, 1994, 176:5 796-5 801.

共引文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部