期刊文献+

独立分量分析在含有多种噪声的图像去噪中的应用

Independent Component Analysis of Image Denoising For Mixed Noise Removal
下载PDF
导出
摘要 提出一种基于负熵的分数低阶独立分量分析(ICA)算法,为使算法更好的适用于实际环境,结合当下较为新颖的Volterra滤波方法——VLMS算法,该算法对高斯噪声有良好的去除效果.仿真结果表明,算法对于含有两种噪声的混合图像具有良好的分离特性及实际意义. A fractional lower order is proposed based on negative entropy of ICA method. In order to make the algorithm better suited to the actual conditions, the filtering method of VLMS is combined with good removal effect on gaussian noise. Theoretical analysis and computer simulation results show that the new method performs superior to traditional image denoising methods in removing mixed noice and practical significance.
作者 刘悦 盛虎
出处 《大连交通大学学报》 CAS 2015年第3期77-81,共5页 Journal of Dalian Jiaotong University
基金 国家自然科学基金资助项目(61201419)
关键词 脉冲噪声 分数低阶 ICA VLMS 图像去噪 random-valued impulse noise fractional lower order ICA VLMS image denoising
  • 相关文献

参考文献11

  • 1KTSIHERINTZIS G A,SHAO M,NIKIAS C L.Recent results in ap-plications and processing of-stable-distributed time series[J].Journal of the Franklin Institute,1996,333(B)(4):467-497.
  • 2AAPO HYVARINEN.Survey on Independent Component Analysis[J].IEEE Signal Processing Letters,1999,6(6):145-147.
  • 3NIKIAS C L,SHAO M.Signal Processing with Alpha-Stable Distributions and Applications[M].New York:John Wiley and Sons,1995.
  • 4STUCK B W.Minimum error dispersion linear filtering of scalar symmetric stable processes[J].IEEE Trans.Automat.Contr,1978,23(3):507-509.
  • 5NIKIAS C L,SHAO M.Signal Proeessing with Alpha-Stable Distribution and Applications[M].New York:John Wiley&Sons,Ine.,1995.
  • 6Samorodnitsky G,Taqqu M S.Stable Non-Gaussian Random Processes[M].New York:Chapman&Hall,1994.
  • 7HYVARINEN A.Fast and robust fixed-point algorithms for independent component analysis[J].IEEE Trans on Neural Networks,1999,10(3):626-634.
  • 8邱天爽,李冰,查代奉.基于分数低阶ICA的混合噪声中脉冲噪声的消除方法[J].通信学报,2011,32(9):77-81. 被引量:2
  • 9查代奉,邱天爽.基于低阶预白化与新型网络传递函数的盲源分离方法[J].信号处理,2006,22(2):163-167. 被引量:2
  • 10刘立峰,汤建华.基于自适应Volterra的高斯噪声图像滤波算法[J].光电子.激光,2009,20(12):1663-1666. 被引量:9

二级参考文献39

  • 1张贤达,保铮.盲信号分离[J].电子学报,2001,29(z1):1766-1771. 被引量:211
  • 2张安清,邱天爽,章新华.分数低阶矩的信号盲分离方法[J].通信学报,2006,27(3):32-36. 被引量:4
  • 3查代奉,邱天爽.基于低阶预白化与新型网络传递函数的盲源分离方法[J].信号处理,2006,22(2):163-167. 被引量:2
  • 4SHAO M, NIKIAS C L. Signal processing with fractional lower order moments: stable processes and their applications[J]. Proceedings of the IEEE. 1993, 81(7):986-1010.
  • 5TSIHERINTZIS G A, SHAO M, NIKIAS C L. Recent results in applications and processing of -stable-distributed time series[J]. Journal of the Franklin Institute,1996,333(B) (4):467-497.
  • 6KURUOGLU E E, ZERUBIA J. Skewed -stable distributions for modeling textures[J].Pattern Recognition Letters, 2003, 24(1-3): 339-348.
  • 7LEE T W, GIROLAMI M, SEJNOWSKI T J. Independent component analysis using an extended infomax algorithm for mixed subgaussian and supergaussian sources[J]. Neural computation, 1999, 11: 417-441.
  • 8BOFILL P, ZIBULEVSKY M. Underdetermined blind source separation using sparse representations[J]. Signal Process, 2001, 81(11): 2353-2362.
  • 9SALLBERG B, GRBIC M N, CLAESSON I. Complex-valued independent component analysis for online blind speech extraction[J]. Audio, Speech, and Language Processing, 2008,16:1624-1632.
  • 10HYVARINEN A, OJA E. A fast fixed-point algorithm for independent component analysis[J]. Neural Comput, 1997, 9(7): 1483-1492.

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部