期刊文献+

关于2-水平U-型设计在三种偏差下的下界的一个注记

A Note on Lower Bounds of Two-level U-type Designs for Three Kinds of Discrepancies
下载PDF
导出
摘要 拉格朗日乘数法和许尔凸函数法都是从设计的行平衡角度来考虑下界的计算.如果利用许尔凸函数来计算2-水平U-型设计在对称化L2-偏差下的下界,能够证明用拉格朗日乘数法和许尔凸函数法这两种方法计算的三种偏差的下界是相等的. The Lagrange multiplier method and Schur_convex function method are both used to calcu—late the lower bounds of a design in view of line balance . This paper attempts to use the Schur_convex function to calculate the lower bound of two_level U_type designs for the symmetric L2-discrepancy, and prove lower bounds calculated by using Lagrange multiplier method and Schur_convex function method for three kinds of discrepancies are equal.
作者 雷轶菊
出处 《北京教育学院学报(自然科学版)》 2015年第1期1-4,共4页 Journal of Beijing Institute of Education
关键词 拉格朗日乘数法 许尔凸函数法 偏差 下界 The Lagrange Multiplier Method Schur_convex Function Method discrepancy lower bound
  • 相关文献

参考文献11

  • 1Fang K. T., Wang Y. Number-Theoretic Methods in Statistics [M]. London: Chapman and Ha11,1994.
  • 2Hickemell F. J. A generalized discrepancy and quadrature erron bound [J]. Math. Comp, 1998 (67):299-322.
  • 3Hickemell F.J. Lattice Rules: How well Do They Measure Up?//P. Hellekalek and G. Larcher. Random and Quasi-Random Point Sets [M]. New York: Springer, 1998(138): 109-166.
  • 4Fang K. T., Li R, Sudjianto A. Design and Modeling for computer Experiments[M] .London: Chapman and Hall, 2005.
  • 5Fang K T., Mukerjee, R. A connection between uniformity and aberration in regular fractions of two-level factorials [J]. Biometrika, 2000(87):193-198.
  • 6Fang K. T., Ma C. X. and Mukerjee R. Uniformity in fractional factorials.//Fang K. T., Hickemell F. J., Niederreiter, H. Monte Carlo and Quasi-Monte Carlo Methods 2000 [M]. Berlin : Springer-Verlag, 2002.
  • 7Fang K. T., Lu X., Winker, P. Lower bounds for centered and wraparound -discrepancy and construction of uniform designs by threshold accepting[J]. J. Complexity, 2003(19): 692-711.
  • 8Qin H., Zhang S. L.and Fang K. T. Constructing uniform design with two- or three-level [J]. Acta Mathematica Sci- entia: Series B, 2006(26):451-459.
  • 9Wang Z. H., Qin H., Chatterjee, K. Lower bounds for the symmetric-discrepancy and their application[J]. Communica- tions in Statistics-theory and Methods, 2007(36):2413-2423.
  • 10Chatterjee K., Li Z. and Qin H. Some new lower bounds to centered and wrap-round -discrepancies [J].Statist. Probab. Lett., 2012(82):1367-1373.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部