期刊文献+

基于“材料基因组工程”的3种方法在镍基高温合金中的应用 被引量:13

Applications of “Materials Genome Engineering” based methods in Nickel-based superalloys
原文传递
导出
摘要 "材料基因组工程"强调以产业应用为导向,集成和发展材料的计算工具、试验工具和数据库等核心基础能力,聚焦解决关系国计民生产业应用中材料的关键问题。本文列举3种基于"材料基因组工程"方法在镍基高温合金中的实际应用,包括高通量合金制备及其关键热力学和动力学数据的高通量采集、显微组织的多尺度和多维度表征、微型试样的力学性能检测。分析表明,定量预测和描述材料成分、工艺、组织和性能关系的计算、表征和数据库技术面临极大挑战,基于"材料基因组工程"的方法将促进镍基高温合金的研发,加快从实验室研究到市场应用的转化。 "Materials Genome Engineering" is industrial application oriented. Exploring and using materials computational tools, experimental tools and databases, it emphasizes the integration and development of these three key capabilities to solve materials issues critical to national welfare and people's livelihood. This paper presents the applications of several "Materials Genome Engineering" based methods in nickel-based superalloys, namely high-throughput alloy fabrication, high-throughput thermodynamic and kinetic data acquisition, multi-scale and multi-dimension microstructure characterization, and miniature specimen testing. Quantitative predictive and descriptive capabilities to reveal the relationships among material composition, processing, structure, and property will undoubtedly be faced with great challenges, but they will progress steadily in this context. "Materials Genome Engineering" based methods will promote the research and development of nickel-based superalloys, accelerating the transition from laboratory work to industrial application.
出处 《科技导报》 CAS CSCD 北大核心 2015年第10期79-86,共8页 Science & Technology Review
基金 国家高技术研究发展计划(863计划)项目(2012AA03A514) 中央高校基本科研业务费专项(2013zzts189)
关键词 材料基因组工程 高通量实验方法 镍基高温合金 扩散多元节 Materials Genome Engineering high-throughput experimental methods Nickel-based superalloy diffusion multiple
  • 相关文献

参考文献41

  • 1National Science and Technology.Materials genome initiative for global competitiveness[R].Washington DC: Office of Science and Technology Policy,2011.
  • 2Office of Science and Technology.Fact Sheet: The materials genome initiative-Three years of progress[R].Washington DC: Office of Science and Technology Policy,2014.
  • 3Gibbs J W.A method of geometrical representation of the thermodynamic properties of substances by means of surfaces[J].Transactions of the Connecticut Academy,1873,2: 382-404.
  • 4Service R F.Materials scientists look to a data-intensive future[J].Science,2012,335(6075): 1434-1435.
  • 5Zewail A H.Four-dimensional electron microscopy[J].Science,2010,328 (5975): 187-193.
  • 6Committee on Integrated Computational Materials Engineering NRC.Integrated computational materials engineering[M].National Academies Press,2008.
  • 7Reed R C.The superalloys: Fundamentals and applications[M].Cambridge University Press,2006.
  • 8Sims C T,Stoloff N S,Hagel W C.Superalloys II[M].Wiley-Interscience,1987.
  • 9Reed R C,Tao T,Warnken N.Alloys-by-design: Application to Nickelbased single crystal superalloys[J].Acta Materialia,2009,57(19): 5898- 5913.
  • 10Cowles B,Backman D,Dutton R.Verification and validation of ICME methods and models for aerospace applications[J].Integrating Materials and Manufacturing Innovation,2012,1(1): 2.

同被引文献305

引证文献13

二级引证文献149

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部