期刊文献+

相变对金星地幔对流影响的数值模拟

Numerical studies of the effects of phase transitions on Venusian mantle convection
原文传递
导出
摘要 利用三维球壳模型通过数值模拟研究了相变对金星地幔对流的影响.模型假定地幔物质流变特性与温度和压力强相关,并包含橄榄石到尖晶石的放热相变和尖晶石到钙钛矿的吸热相变.通过对不同瑞利数、不同相变Clapeyron斜率和不同相变深度的模型的计算分析,发现:(1)吸热相变对相变面上下物质交换具有阻碍作用,增加相变Clapeyron斜率的绝对值,会减小相变面处的径向质量流和归一化径向质量流、并减少地幔热柱个数,即上下物质交换减弱、相变的阻碍作用加强、对流波长增加;(2)增大瑞利数Ra,也使对流波长增加或热柱个数减少,但对相变面上下物质交换的影响主要反映在对流强度与Ra的关系上,即Ra增加,对流强度增加,相变面处的径向质量流增大,上下物质交换量增大.而Ra增加,归一化径向质量流变化不大,即Ra对相变的阻碍作用的影响不大.这不同于二维模型中瑞利数的增加将很大程度上增加相变的阻碍作用的结论;(3)吸热相变面深度的少许增加会略微减少热柱个数,但对相变面上下物质交换的影响很小.虽然与已有研究一致,吸热相变能阻碍相变面上下物质交换,但这种阻碍作用在三维模型中并不会导致物质在界面上下大量堆积.上下物质交换量随时间变化不大,地幔对流结构相对稳定.这与二维模型中存在周期性的大量物质交换明显不同.这说明相变的作用将难以导致金星表面的大量岩浆作用,或者说相变难以导致金星灾难性的表面更新.
出处 《中国科学:地球科学》 CSCD 北大核心 2015年第5期611-624,共14页 Scientia Sinica(Terrae)
基金 国家自然科学基金项目(批准号:41474082 91014005) 中国科学院知识创新工程重要方向项目(编号:KZCX2-YW-QN507)资助
  • 相关文献

参考文献56

  • 1张健,石耀霖.金星非单调冷却热演化历史分析[J].地球物理学报,2007,50(1):146-152. 被引量:4
  • 2Anderson D L. 1967. Phase changes in the upper mantle. Science, 157:1165-1173.
  • 3Arkani-Hamed J, Toksoz M N. 1984. Thermal evolution of Venus. Phys Earth Planet Inter, 34:232-250.
  • 4Armann M, Tackley P J. 2012. Simulating the thermochemical magmatic and tectonic evolution of Venus's mantle and lithosphere:Two-dimensional models. J Geophys Res, 117:E12003.
  • 5Bjonnes E E, Hansen V L, James B, et al. 2012. Equilibrium resurfacing of Venus: Results from new Monte Carlo modeling and implications for Venus surface histories. Icarus, 217:451-461.
  • 6Bond T M, Warner M R. 2006. Dating Venus: Statistical models of magmatic activity and impact cratering. In: 37th Lunar and Planetary Science Conference. League City, Texas. 1957.
  • 7Christensen U R, Yuen D A. 1985. Layered convection induced by phase transitions. J Geophys Res, 90:10291-10300.
  • 8Fowler A C, O'Brien S B G. 1996.A mechanism for episodic subduction on Venus. J Geophys Res, 101:4755-4763.
  • 9Hansen V L, Young D A. 2007. Venus's evolution: A synthesis. Geol Soc Am Bull, 419:255-273.
  • 10Hauck S A, Phillips R J. 1998. Venus: Crater distribution and plains resurfacing models. J Geophys Res, 103:13635-13642.

二级参考文献16

  • 1Lewis J S.Putting it all together.In:Beatty J K,Chaikin A ed.The New Solar System (3rd edition).New York:Cambridge Univ.Press,1990.281 ~ 288
  • 2Pater I D,Lissauer J J.Planetary Sciences.New York:Cambridge Univ.Press,2001.528~ 529
  • 3Stevenson D J.Styles of mantle convection and their influence on planetary evolution.Geoscience,2003,335:99 ~ 111
  • 4Turcotte D L.An episodic hypothesis for Venusian tectonics.J.Geophy.Res.,1993,98:17061 ~ 17068
  • 5Schubert G,Turcotte D L,Olson P.Mantle Convection in the Earth and Planets.New York:Cambridge Univ.Press,2001.940 ~ 941
  • 6Head J W.Surfaces of the terrestrial planets.In:Beatty J K,Chaikin A ed.The New Solar System (3rd edition).New York:Cambridge Univ.Press,1990.77 ~ 90
  • 7Basilevsky A T,Head J W.The Surfaces of Venus.Rep.Prog.Phys,2003,66:1699~1734
  • 8Ivanov M A.Stratigraphy of small shield volcanoes on Venus:Criteria for determining stratigraphic relationships and assessment of relative age and temporal abundance.J.Geophy.Res.,2004,109,E10001,doi:10.1029/2004JE002252
  • 9Davies G F.Punctuated tectonic evolution of the earth.Earth Planet Sci.Lett.,1995,136:363~379
  • 10Zhang J,Shi Y.Parameterized thermal model of a mixed mantle convection.Acta Seismologica Sinica,1999,12(6):699 ~ 709

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部