期刊文献+

Enhanced electrochemical stimuli multilayers based on a ferrocene-containing polymer 被引量:1

一种二茂铁修饰的聚合物用于增强电化学刺激响应多层膜(英文)
原文传递
导出
摘要 Based on the noncovalent functionalization of ferrocene-grafted polyethylenimine (PEI-Fc) and carbon nanotubes (CNTs), CNT bundles are exfoliated by PEI-Fc solution and thus form stable compounds PEI-Fc@CNTs, which is used to construct the PEI-Fc@CNTs/DNA multilayers through layer-by-layer assembly. The multilayers show a highly uniform and homogeneous characteristic, which significantly improve the electrical property of the multilayers. Upon the oxidation electrical potential, the ferrocene groups are switched from reduction state ([Fe(C5H5)2]) to oxidation state ([Fe(C5H5)2]^+), leading to change of microenvironments' charge density, resulting in swelling of the multilayers and a final degree of swelling of 37 % and the decrease of multilayer stiffness. We maintain that electrochemical control over the swelling behavior of multilayers could have important implications for responsive coatings of nanoscale devices, including mechanically tunable surfaces which are used to modulate cellular activities and control drug delivery. 利用二茂铁分子修饰的聚乙烯亚胺(PEI-Fc)与碳纳米管(CNTs)之间的特殊非共价键作用,能够制备稳定的PEI-Fc@CNTs溶液,并由此与DNA进行层层静电组装.组装制备的(PEI-Fc@CNTs/DNA)多层膜结构均一,并显示出增强的电化学性能.在氧化电势下,二茂铁分子将从还原态([Fe(C5H5)2])转变为氧化态([Fe(C5H5)2]+),导致多层膜内电荷密度的改变.由此,多层膜能够达到37%的溶胀,硬度随之下降.通过电化学手段调控溶胀性能的多层膜能够应用于纳米器件涂层领域,实现对细胞行为的调控或药物的控释.
出处 《Science Bulletin》 SCIE EI CAS CSCD 2015年第10期936-942,I0008,共8页 科学通报(英文版)
基金 supported by the National Natural Science Foundation of China(21174126,51333005,21374095) the National Basic Research Program of China(2011CB606203) Research Fund for the Doctoral Program of Higher Education of China(20110101110037,20120101130013) the Qianjiang Excellence Project of Zhejiang Province(2013R10035) International Science&Technology Cooperation Program of China(2014DFG52320)
关键词 Layer-by-layer assembly Stiffness Ferrocene Carbon nanotubes Electrochemical stimuli 二茂铁 化学刺激 聚合物 电化学控制 强电 碳纳米管 聚乙烯亚胺 多层膜
  • 相关文献

参考文献31

  • 1Goldman R, Pollack S (1996) Electric fields and proliferation in a chronic wound model. Bioelectromagnetics 17:450-457.
  • 2Ciombor DM, Aaron RK (1993) Influence of electromagnetic fields on endochondral bone formation. J Cell Biochem 52:37-41.
  • 3Politis MJ, Zanakis MF (1989) The short-term effects of delayed application of electric fields in the damaged rodent spinal cord. Neurosurgery 25:71-75.
  • 4Hou C, Duan Y, Zhang Q et al (2012) Bio-applicable and electroactive near-infrared laser-triggered self-healing hydrogels based on graphene networks. J Mater Chem 22:14991-14996.
  • 5Liu Y, Hu J, Zhuang X et al (2012) Synthesis and characterization of novel biodegradable and electroactive hydrogel based on aniline oligomer and gelatin. Macromol Biosci 12:241-250.
  • 6Shang J, Shao Z, Chen X (2008) Chitosan-based electroactive hydrogel. Polymer 49:5520-5525.
  • 7Cui HT, Wang Y, Cui LG et al (2014) In vitro studies on regulation of osteogenic activities by electrical stimulus on biodegradable electroactive polyelectrolyte multilayers. Biomacromolecules15:3146-3157.
  • 8Sun YX, Ren KF, Zhao YX et al (2013) Construction of redoxactive multilayer film for electrochemically controlled release. Langmuir 29:11163-11168.
  • 9Sun YX, Ren KF, Wang JL et al (2013) Electrochemically controlled stiffness of multilayers for manipulation of cell adhesion. ACS Appl Mater Interfaces 5:4597-4602.
  • 10Guo CX, Yang HB, Sheng ZM et al (2010) Layered graphene/quantum dots for photovoltaic devices. Angew Chem Int Ed 49:3014-3017.

同被引文献8

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部