摘要
基于EQ_1^(rot)非协调矩形元及零阶R-T元对非线性抛物方程构造了一个新的混合元格式.利用EQ_1^(rot)元所具有的两个特殊性质:(I)插值算子与其投影算子是一致的;(II)当所考虑问题的精确解属于H^3(ΩΩ)时,其相容误差可以达到O(h^2)(h是剖分参数),比插值误差高一阶.同时借助关于这两个单元的高精度分析、平均值技巧和插值后处理技术,得到了关于原始变量以及通量的超逼近和整体超收敛结果.
A new mixed finite elements scheme is proposed for nonlinear parabolic equation based on the nonconforming EQ1^rot element and zero orderR- Telement. By utilizing the two special properties of the EQ1^rot element: one is that the interpolation operator is identity to the traditional Ritz projection operator; another is that the consistency error is of orderO(h^2) (his the partition parameter) when the exact solution of the problem considered belongs to H^3 (Ω), which is one order higher than the interpolation error. Furthermore, by utilizing the high accuracy analysis, means of the average value and interpolation post processing techniques, the superclose and superconvergence results of the original and flux variables are derived.
出处
《数学的实践与认识》
北大核心
2015年第10期256-263,共8页
Mathematics in Practice and Theory
基金
国家自然科学基金(10971203
11271340)
河南省教育厅科学技术重点项目(14A110020)
关键词
非线性抛物方程
EQ1^rot非协调元
零阶R—T元
混合元格式
超逼近及超收敛
Nonlinear parabolic equation
EQ1^rot nonconforming finite element
zero order R - T element
Mixed element scheme
Superclose and superconvergence.