摘要
将指数变换u(x,t)=p(x,t)e^(k/(2ε)x),p(x,t)=v(x,t)e^(st)、pade'逼近与紧致差分方法相结合,对线性对流扩散问题提出了精度为o(τ~4+h^4)的差分格式,分析了稳定性.最后通过数值算例说明格式的有效性.
An accurateo(τ^4+h^4) compact difference shceme is constructed by means of the Exponential transformu(x,t)=p(x,t)ek/2εx,p(x,t)=v(x,t)e^at, pade'approximation method for linear convection-diffusion problems analysis of stability . Finally, the availability of the scheme is established by an example.
出处
《数学的实践与认识》
北大核心
2015年第10期286-289,共4页
Mathematics in Practice and Theory
关键词
对流扩散方程
指数变换
紧致差分格式
pade’逼近
convection-diffusion
the exponential transform
Compact difference scheme pade'approximation