期刊文献+

求解对流扩散方程的紧致pade'逼近差分格式 被引量:2

A Compact Pade'Approximation Scheme for Solving Convection Diffusion Equation
原文传递
导出
摘要 将指数变换u(x,t)=p(x,t)e^(k/(2ε)x),p(x,t)=v(x,t)e^(st)、pade'逼近与紧致差分方法相结合,对线性对流扩散问题提出了精度为o(τ~4+h^4)的差分格式,分析了稳定性.最后通过数值算例说明格式的有效性. An accurateo(τ^4+h^4) compact difference shceme is constructed by means of the Exponential transformu(x,t)=p(x,t)ek/2εx,p(x,t)=v(x,t)e^at, pade'approximation method for linear convection-diffusion problems analysis of stability . Finally, the availability of the scheme is established by an example.
作者 王慧蓉
机构地区 长治学院数学系
出处 《数学的实践与认识》 北大核心 2015年第10期286-289,共4页 Mathematics in Practice and Theory
关键词 对流扩散方程 指数变换 紧致差分格式 pade’逼近 convection-diffusion the exponential transform Compact difference scheme pade'approximation
  • 相关文献

参考文献7

  • 1Mohebbi A, Dehghan M. High order compact solution of the one dimensional heat and advection diffusion equations[J]. Appl.Math.Modell, 2010, 34(10): 3071-3084.
  • 2Norhashidah H, MohdAli S T. Ling. Rotated Krylov preconditioned iterative schemes in the solution of convection-diffusion equations[J]. Applied Mathematics and Computation, 2008, 206: 425-437.
  • 3Nabavi M, Kamran M H, Siddiqui J. Dargahi. A new 9-point sixth-order accurate compact finite- difference method for the Helmholtz equation[J]. Journal of Sound and Vibration, 2007(307): 972- 982.
  • 4开依沙尔.热合曼,努尔买买提.黑力力.求解Burgers方程的高精度紧致Pade'逼近格式[J].河南师范大学学报(自然科学版),2014,42(4):6-12. 被引量:4
  • 5田芳,田振夫.定常对流扩散反应方程非均匀网格上高精度紧致差分格式[J].工程数学学报,2009,26(2):219-225. 被引量:15
  • 6钱凌志,顾海波.高阶紧致格式结合外推技巧求解对流扩散方程[J].山东大学学报(理学版),2011,46(12):39-43. 被引量:3
  • 7Ding H F, Zhang Y X. Anew difference shceme with high accuracy and absolute stability for solving convection-diffusion equations[J]. Journal of Computational and Applied Mathematics, 2009, 230: 600-606.

二级参考文献33

  • 1李桂波,李明军,高智.对流扩散方程的变步长摄动有限差分格式[J].水动力学研究与进展(A辑),2005,20(3):293-299. 被引量:13
  • 2Spotz W F. High-order compact finite difference schemes for computational mechanics[D]. University of Texas at Austin, Austin, TX, December 1995
  • 3Ge L, Zhang J. High accuracy iterative solution of convection diffusion equation with boundary layers on nonuniform grids[J]. Journal of Computational Physics, 2002, 171:560-578
  • 4Sleijpen G L G, Van der Vorst H A. Hybrid bi-conjugate gradient methods for CFD problems[J]. Computational Fluid Dynamics Review, Hafez M, Oshima K(eds). Wiley: Chichester, 1995:457-476
  • 5Tian Z F, Dai S Q. High-order compact exponential finite difference methods for convection-diffusion type problems[J]. Journal of Computational Physics, 2007, 220(2): 952-974
  • 6Pillai A C R. Fourth-order expential finite difference methods for boundary value problems of convective diffusion type[J]. International Journal for Numerical Methods in Fluids, 2001, 7:87-106
  • 7THOMAS J W. Numerical partial differential equations: conservation laws and elliptic equations[M]. Berlin: Springer, 1999.
  • 8MORTON K W, MAYERS D F. Numerical solution of partial differential equations [ M ]. Cambridge: Cambridge University Press, 2005.
  • 9KARAA S, ZHANG J. High order ADI method for solving unsteady convection-diffusion problems [ J ]. J Comput Phys,2004, 198(1) :1-9.
  • 10LIAO W, ZHU J, KHALIQ A Q M. A fourth-order compact algorithm for nonlinear reaction-diffusion with Neumann boundary conditions [ J ]. Numerical Methods of Partial Differential Equations, 2006, 22:600-616.

共引文献18

同被引文献15

  • 1Gabriella D B,Alfredo L.An identification problem in age-Dependent population diffusion[J].Numerical Functional Analysis and Optimization,2013,34(1):36-73.
  • 2Liao Wenyuan,Mehdi D,Akbar M.Direct numerical method for an inverse problem of a parabolic parical differential equation[J].Journal of Computational and Applied Mathematics,2009,3232:351-360.
  • 3Liu Songshu,Feng Lixin.A modified kernel method for atime-fractional inverse diffusion problem[J].Advances in Difference Equations,2015,342:1-11.
  • 4Abeeb A A,Ryad A G,Nasser-eddine T.Artificial boundary condition for a modifiedfractional diffusion problem[J].Boundry Value Problems,2015,20:1-17.
  • 5Ebru O,Ali D.Inverse problem for a time-fractionalparabolic equation[J].Journal of Inequalities,2015,81:1-9.
  • 6Xiao Cuie.Optimization method for the inverse coefficient problem of a parabolic equation[J].Procedia Engineering,2011,15:4880-4884.
  • 7Fabien T,Prabir D,Oscar O.On an inverse problem:Recovering of non-smooth solutions to backward heat equation[J].Applied Mathematical Modelling,2012,36:4003-4019.
  • 8Yang Liu,Deng Zuicha,Yu Jianning,et al.Optimazation method for the inverse problem of reconstructing the souse term in a parabolic equation[J].Mathematics and Computers in Simulatin,2009,80:314-326.
  • 9戴晓娟,张启敏.非线性随机种群系统的最优控制[J].昆明理工大学学报(理工版),2009,34(3):100-104. 被引量:5
  • 10晏云,戴伟忠.解非线性薛定谔方程的广义时域有限差分方法的紧致格式[J].高等学校计算数学学报,2014,36(1):49-57. 被引量:2

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部