期刊文献+

具有整体平衡性质的广义正交表的替换构造及其应用

Replacement Structure and Its Application for Generalized Orthogonal Arrays with the Overall Balance
原文传递
导出
摘要 广义正交表是一种能够保证试验因子的数据分析结论具有再现性的最基本的设计表.试验设计的整体平衡性是关于系统中心、区组因子(可观测的干扰因子)、试验因子(可控因子)、试验误差(未知不可控因子)整体全面思维角度的一种平衡.具有整体平衡性质的广义正交表是在整体全面思维的角度能够保证总体均值、区组因子、试验因子、试验误差标准差的估计具有再现性的设计表.设计表的构造是试验设计的重要问题之一.类比正交表的替换构造方法,提出了一种具有整体平衡性质的广义正交表的一种替换构造方法,并通过算例说明此种构造方法的实用性. Generalized orthogonal array is a kind of the most basic design, which can ensure the data analysis of experimental factors having the reproducibility. Is the overall balance of the design of experiment about the system center, block factor (observable interference factors), experimental factors (controllable factors), experimental error (unknown uncontrollable factors) overall thinking Angle of a balance. Generalized orthogonal array with overall balance is the most basic design, which is in the nature of the overall balance in the overall comprehensive thinking Angle to ensure that the overall average, block factor, experiment factors and error estimates of the standard deviation with reproducibility. The structure of the design is one of the important problems of experiment design.Replacing construction method of analogy to the orthogonal arrays, this paper puts forward a kind of generalized orthogonal arrays being in the nature of the overall balance of a replacement method, to illustrate the usefulness of this method by an example.
出处 《数学的实践与认识》 北大核心 2015年第10期302-308,共7页 Mathematics in Practice and Theory
基金 河南省科技厅项目(142300410103) 河南省高等学校骨干教师资助计划(2013GGJS-169) 许昌市科技局项目(5014)
关键词 广义正交表 整体平衡性 正交表 替换构造 generalized orthogonal array the overall balance orthogonal array replacement structure
  • 相关文献

参考文献6

二级参考文献28

  • 1张明珠,吴亚桢,张建军,田萍,张应山.正交平衡区组设计的替换构造[J].山西大学学报(自然科学版),2012,35(3):472-477. 被引量:6
  • 2庞善起.正交表的完备交互作用列[J].高校应用数学学报(A辑),2005,20(3):333-336. 被引量:2
  • 3Yingshan ZHANG,Weiguo LI,Shisong MAO,Zhongguo ZHENG.A SIMPLE METHOD FOR CONSTRUCTING ORTHOGONAL ARRAYS BY THE KRONECKER SUM[J].Journal of Systems Science & Complexity,2006,19(2):266-273. 被引量:8
  • 4Zhang Y S, Zhang X Q, Pan C Y, Wang X D, Chen X P, Wang H, Tian J T, Mao S S. Statistical analysis of orthogonal balanced block designs[J].第四届全国生存分析与应用统计研讨会,贵州民族学院,2008(10):17-19.
  • 5Zhang Y S, Lu Y Q and Pang S Q. Orthogonal arrays obtained by orthogonal decomposition of' projection matrices[J]. Statistica Sinica, 1999, 9: 595-604.
  • 6Zhang Y S, Wang X D, Zhang X Q, Pan C Y, Chen X P, Wang H, Tian J T, Mao S S. Essentialtheory of orthogonal balanced block designs[J], t第六届海峡两岸统计与概率研讨会,南京大学,2009(1):9-11.
  • 7杨子胥.正交表的构造[M].济南:山东人民出版社,1975.
  • 8Zhang Y S,Lu Y Q,Pang S Q.Orthogonal arrays obtained by orthogonal decomposition of projection matricesSta-tistica Sinica,1999.
  • 9张应山,张晓琴,潘长缘,田金亭,茆诗松.正交平衡区组设计的基本理论[C]//第一届中国“试验设计与质量改进”会议论文集,2007:44-69.
  • 10张应山,张晓琴,潘长缘,田金亭,茆诗松.正交平衡区组设计的统计分析[C]//第一届中国“试验设计与质量改进’会议论文集,2007:70-87.

共引文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部