期刊文献+

多孔硅表面缺陷光子晶体的传感模型及特性 被引量:5

Sensing Model and Performance of the Surface Defect Photonic Crystal with Porous Silicon
原文传递
导出
摘要 提出了多孔硅表面缺陷光子晶体结构,引入多孔硅敏感层及吸收介质层形成表面缺陷腔,利用多孔硅高效的承载机制,将其作为待测样本的传感区域;由于吸收介质Zn S对谐振波长的吸收,可在反射光谱中获得与谐振波长对应的缺陷峰。以多孔硅的厚度为被优化变量,利用反向传播神经网络进行结构参数优化获得多孔硅的厚度最优值。由Goos-H?nchen位移建立待测样本浓度与缺陷峰波长的关系模型,进而对该结构进行传感特性分析。结果表明,优化结构参数后,缺陷峰对应的反射率由31.23%下降到0.00129%,其Q值可达1537.37。在传感特性研究中,每1%质量分数的灵敏度为2.5 nm。该表面缺陷光子晶体传感结构可为样本浓度、组分等信息的监测提供一定的理论参考。 The photonic crystal structure containing surface defect with porous silicon is proposed, in which the defect cavity on the surface is established by introducing the porous silicon layer and the absorbing medium layer, and the sensing region of the sample detected is formed by the use of the efficient carrying mechanism of the porous silicon. Because of the absorption of Zn S, the light corresponding to the resonant wavelength is absorbed and the defect peak is obtained in the reflection spectrum. The back propagation neural network is adopted to optimize the thickness of porous silicon globally. The relationship model between the concentration of the sample detected and the defect peak wavelength is established according to the GoosH?nchen shift and the sensing performance is analyzed. The simulation results show that the reflectivity of the defect peak decreases from 31.23% to 0.00129% and the Q value can attain to 1537.37 after the optimal design of structural parameter. The sensitivity of the sensor structure is about 2.5 nm at per 1% mass fraction, which can provide effective theory guidance for the detection of the concentration and composition of samples.
出处 《光学学报》 EI CAS CSCD 北大核心 2015年第5期330-336,共7页 Acta Optica Sinica
基金 国家自然科学基金(61201112,61475133,61172044) 河北省自然科学基金(F2013203250,F2012203169) 河北省高等学校青年拔尖人才计划项目(BJ2014056) 燕山大学青年教师自主研究计划项目(14LG013)
关键词 传感器 光子晶体 多孔硅 反向传播神经网络 灵敏度 sensors photonic crystal porous silicon back propagation neural network sensitivity
  • 相关文献

参考文献17

  • 1Shen Yang, Hao Sun, Liutong Yuan, et al.. Refractive index and temperature sensor based on cladding-mode Bragg grating excited by abrupt taper interferometer[J]. Chin Opt Lett, 2013, 11 (12): 120604.
  • 2周峰,邱孙杰,罗炜,徐飞,陆延青.一种反射型全光纤氢气传感器的设计[J].光学学报,2013,33(11):36-40. 被引量:3
  • 3尹冬梅,戴世勋,王训四,许银生,张培晴,林常规,沈祥.红外硫系玻璃光纤在传感领域的研究进展[J].激光与光电子学进展,2013,50(2):92-99. 被引量:8
  • 4S Michaelis, J Wegener, R Robelek. Label-free monitoring of cell-based assays: Combining impedance analysis with 31~1~ tot muhiparametric cell profiling[J]. Biosens Bioelectron, 2013, 49: 63-70.
  • 5K D Kihm, S Cheon, J S Park, et al.. Surface plasmon resonance (SPR) reflectance imaging: Far-field recognition of near-field phenomena[J]. Opt Laser Eng, 2012, 50(1): 64-73.
  • 6W T Zhang, P D Han, A D Lan, et al.. Defect modes tuning of one-dimensional photonie erystals with lithium niobate and silver material defect[J]. Physica E, 2012, 44(1): 813-815.
  • 7陈颖,王文跃,毕卫红.基于粒子群优化的生物传感器灵敏度特性分析[J].中国激光,2014,41(6):264-269. 被引量:4
  • 8W Su, G G Zheng, X Y Li. A resonance wavelength easy tunable photonic crystal biosensor using surface plasmon resonance effect [J]. Optik, 2013, 124(21): 5161-5163.
  • 9M Rahmat, W Maulina, E Rustami, et al.. Performance in real condition of photonic crystal sensor based NO2 gas monitoring system [J]. Atmos Environ, 2013,79: 480-485.
  • 10H J Kim, Y Y Kim, K W Lee, et al.. A distributed Bragg reflector porous silicon layer for optical interferometric sensing of organic vapor[J]. Sensors and Actuators B: Chemical, 2011,155(2): 673-678.

二级参考文献66

  • 1张振远,凌根华.硫系玻璃红外光纤[J].玻璃纤维,2005(1):15-18. 被引量:4
  • 2沈艳,郭兵,古天祥.粒子群优化算法及其与遗传算法的比较[J].电子科技大学学报,2005,34(5):696-699. 被引量:90
  • 3毛锡赉,杨佩红.Ge-As-S系统玻璃物理和声光性质的研究[J].光学学报,1984,4(4):348-353.
  • 4B. Bureau, S. Maurugeon, F. Charpentier et al.. Chalcogenide glass fibers for infrared sensing and space optics[J]. Fiber and Integrated Optics, 2009, 28(1) : 65-80.
  • 5J. A. Harrington. A review of IR transmitting, hollow waveguides [J]. Fiber & Integrated Optics, 2000, 19 (3): 211-227.
  • 6J. Sanghera, I. Aggarwal. Active and passive chalcogenide glass optical fibers for IR applications: a review[J]. J. Non-Cryst. Solids, 1999, 256-257:6-16.
  • 7J. Sanghera, L. Shaw, P. Pureza et al.. Progress of chalcogenide glass fibers[C]. OFC, 2007. OWA2.
  • 8B. Bureau, X. H. Zhang, F. Smektala et al.. Recent advances in chalcogenide glasses[J]. J. Non-Cryst. Solids, 2004, 345-346 : 276-283.
  • 9A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov et al. Demonstration of CO2 laser power delivery through chalcogenide-glass fiber with negative-curvature hollow core[J]. Opt. Express, 2011, 19(25) : 25723-25728.
  • 10E. Jurisova, L. Ladanyi, J. Mullerova. Spectral response of optical switches based on chalcogenide bistable fiber Bragg gratings[C]. ELEKTRO, 2012. 493-499.

共引文献12

同被引文献28

引证文献5

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部