期刊文献+

基于小波神经网络的航空通信盲均衡方法 被引量:2

Blind Equalization Algorithm with Wavelet Neural Network in Aeronautical Communication
下载PDF
导出
摘要 针对航空通信信道中,多径干扰带来的信号畸变以及信道记忆效应所产生的码间干扰会严重影响通信质量,且现有的均衡算法由于收敛速度较慢无法适应高速航空通信的需求。提出了一种利用均衡器输出信号构建反馈循环的小波神经网络盲均衡算法。该方法利用反馈循环来消除航空信道的记忆效应,并结合小波神经网络时频局域性的特性来消除航空信道的多径效应和信号畸变所产生的码间干扰。仿真结果表明,该方法可以有效提高盲均衡算法的收敛速度,并使输出的信号星座图更加清晰与紧凑,有利于码间干扰的消除,具有一定的实际应用价值。 According to channel of aeronautical communication,the distorted signal that is generated by multipath interference and the intersymbol interference that is caused by memory of communication channel will seriously affect the equality of communication.But the existing equalization algorithms are hard to satisfy the request of high speed aeronautical communication.A wavelet neural network blind equalization algorithm with feedback revised is proposed.The algorithm utilized the feedback revised model to remove the memory of aeronautical communication,and combining the characteristics of frequency characteristics of the wavelet neural network to abate the signal distortion and multipath interference.The simulation results show that,this method can effectively improve the convergence rate of the blind equalization algorithm,and the signal constellation diagram output is more clear and compact.The algorithm is helpful to eliminate the intersymbol interference and has certain practical application value.
出处 《科学技术与工程》 北大核心 2015年第14期180-184,共5页 Science Technology and Engineering
基金 国家自然科学基金资助项目(61301094)资助
关键词 航空通信 神经网络 小波函数 盲均衡 aeronautical communication neural network wavelet blind equalization
  • 相关文献

参考文献9

  • 1唐成凯,廉保旺,张玲玲.卫星通信系统双向中继转发自干扰消除算法[J].西安交通大学学报,2015,49(2):74-79. 被引量:16
  • 2唐成凯,廉保旺,张玲玲.卫星通信双循环下Volterra滤波预失真算法[J].西安电子科技大学学报,2015,42(3):109-114. 被引量:2
  • 3Park J, Ha Y, Chung W. Reduced complexity MLSD equalizers based on bidirectional DFEs. IEICE Transactions on Communica- tions, 2012 ;95 ( 11 ) : 3432-3438.
  • 4Guvensen G M, Yilmaz A O. A general framework for optimum itera- tive blockwise equalization of single carrier MIMO systems and asymp- totic performance analysis. IEEE Transactions on Communications, 2013 ;61 (2) 609-619.
  • 5Arik S O, Askarov D, Kahn J M. Adaptive frequency-domain equali- zation in mode-division multiplexing systems. Journal of Lightwave Technology, 2014; 32(10) :1841-1852.
  • 6Takano Y, Anwar K, Matsumoto T. Spectrally efficient frame-format- aided turbo equalization with channel estimation. IEEE Transactions on Vehicular Technology, 2013 ;62(4) : 1635-1645.
  • 7唐成凯,廉保旺,张玲玲.卫星通信中动态神经网络预失真算法研究[J].西北工业大学学报,2013,31(1):34-39. 被引量:11
  • 8薛源,孙小东,张嵩.短波信道下直扩信号检测与载频盲估计[J].科学技术与工程,2014,22(29):44-49. 被引量:4
  • 9Bassam, Seyed A. Linearization of concurrent dual-band power am- plifier based on 2D-DPD technique. IEEE Microwave and Wireless Components Letters, 2011; 21 (12): 685-687.

二级参考文献37

  • 1张仔兵,李立萍,肖先赐.MPSK信号的循环谱检测及码元速率估计[J].系统工程与电子技术,2005,27(5):803-806. 被引量:44
  • 2王勇,向新,易克初.宽带正交频分复用系统的记忆型预失真器[J].系统工程与电子技术,2006,28(9):1456-1459. 被引量:5
  • 3Swami A,Member S.Hierarchical digital modulation classification using cumulants.IEEE Transactions on Communication,2000; 48 (3):416-429.
  • 4Gardner W A.Spectral correlation of modulated signals:part Ⅱ-digital modulation.IEEE Transactions on Communication,1987 ; 35 (6):595-600.
  • 5Gardner W A.Signal interception:performance advantages of cyclicfeature detectors.IEEE Transactions on Communication,1992; 40 (1):149-159.
  • 6Gardner W A.Spooner C M.Cyclic spectral analysis for signal detection and modulation recognition.IEEE Transactions on Communication,1988 ;24(2):419-424.
  • 7MORIO T,TAKASHI S,HIDEKI T.Scintillation model of laser beam propagation in satellite-to-ground bidirectional atmospheric channels[J].Acta Astronautica,2012,80(1):58-64.
  • 8SIDDALL G R,FOWLER G A,BEANLANDS B D,et al."Seacycler":a deep ocean profiler with full mooring two-way satellite communication[C]∥Proceedings of the International Offshore and Polar Engineering Conference.Piscataway,NJ,USA:IEEE,2012:493-501.
  • 9HU Zhengqun,AI Guoxiang,ZHANG Lirong.A control system in satellite navigation and communication terminal[J].Applied Mechanics and Materials,2014,513(1):2888-2892.
  • 10MORIO T,TAKASHI S,WERNER K.Overview of the laser communication system for the NICT optical ground station and laser communication experiments on ground-to-satellite links[J].Journal of the National Institute of Information and Communications Technology,2012,59(1):53-75.

共引文献29

同被引文献35

  • 1葛强,徐俩俩,段小汇.人工神经网络在水泵性能预测中的应用[J].河海大学学报(自然科学版),2007,35(1):22-25. 被引量:9
  • 2中国灌溉排水发展中心,武汉大学,扬州大学.泵站现状评价及重点工程技术改造与设备研究综合报告[R].北京:中国灌溉排水发展中心,2005.
  • 3王小川,史峰,郁磊,等.MATLAB神经网络43个案例分析[M].北京:北京航空航天大学出版社,2013.
  • 4水利部农村水利司,中国灌溉排水发展中心.全国大型泵站更新改造“十一五”规划(征求意见稿)[R].北京:水利部农村水利司, 2006.
  • 5李君.引黄低扬程泵站装置性能预测研究[D].郑州:华北水利水电大学,2009.
  • 6Mansour A K, Osama E.G, Mahmoud G R.Predicting axial piston pump performance using neural networks[J].Mechanism and Machine Theory, 1999, 34(8): 1211-1226.
  • 7Mohammed E D, Salim A H.Development of wavelet network model for accurate water levels Prediction with meteorological effects[J].Applied Ocean Research, 2015, 53(10): 228-235.
  • 8Wei Shouke, Song Jinxi, Nasreen I K.Simulating and predicting river discharge time series using a wavelet neural network hybrid modeling approach[J].Hydrological Processes, 2012, 26(2): 281-296.
  • 9Zhang Jinya, Zhu Hongwu, Yang Chun.Multi-objective shape optimization of helico-axial multiphase pump impeller based on NSGA-II and ANN[J].Energy Conversion and Management, 2011, 52(1): 538-546.
  • 10Liu Hui, Tian Hongqi, Li Yanfei.Comparison of four adaboost algorithm based artificial neural networks in wind speed predictions[J].Energy Conversion and Management, 2015, 92(3):67-81.

引证文献2

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部