期刊文献+

玉米弯孢叶斑病菌RhoGAP基因家族的全基因组鉴定与生物信息学分析 被引量:2

Genome-wide Identification and Analysis of RhoGAP Family from Curvularia lunata
原文传递
导出
摘要 RhoGAPs(GTPase activating proteins)通过与Rho GTP酶结合,促使GTP酶水解成Rho GDP无活状态,在生物体中调控着重要的生物学功能。在全基因组上对玉米弯孢叶斑病菌(C.lunata)中RhoGAP基因家族成员进行鉴定,对其序列特征分析。结果表明,玉米弯孢叶斑病菌(C.lunata)有5个RhoGAP基因家族成员,分布在5不同的Scaffold上,其基因结构分析显示,外显子和内含子大小与位置均不一样,表现出复杂的基因结构。序列比对和系统进化分析发现,5个RhoGAP氨基酸序列与其他真菌来源的RhoGAP一样具有特征性保守序列区,与粗糙脉胞菌(N.crassa)和小麦黄斑叶斑病菌(P.tritici-repentis)的RhoGAP蛋白关系密切,其亲缘关系最近。 RhoGAPs(GTPase-activating proteins) enhance the RhoGTPases hydrolsis from the GTP-bound Rho proteins to inactive GDP-bound state, causing their inactivation by combined with RhoGTPases, which play an important regulatory function in organism. RhoGAP gene family from Curvularia lunata on genome-wide was identi- fied, and the characteristics of sequences were analyzed. The results showed that five RhoGAP genes distributed in five Scaffolds were identified. All RhoGAP genes had different exon and intron size and location which showed a complex gene structure. Sequence alignment and phylogenetic relationship showed that like other fungi laccase, there was characteristic conserved sequences in each of five RhoGAP amino acid sequence, and phylogenetic analy- sis revealed that RhoGAP genetic relationship closed to Neurospora crassa and Pyrenophora. tritici-repentis. This pa- per will help to study the regulatory function of RhoGAP.
出处 《玉米科学》 CAS CSCD 北大核心 2015年第3期44-49,共6页 Journal of Maize Sciences
基金 国家自然基金项目(31101407 31272026 31301611) 2013年黑龙江省研究生学术交流项目(黑教研[2013]145号)
关键词 玉米 RHOGAP 弯孢叶斑病菌 基因家族 基因结构 Maize RhoGAP Curvularia lunata Gene family Gene structure
  • 相关文献

参考文献23

  • 1Etienne-Manneville S, Hall A. RhoGTPases in cell biology[J]. Na- ture, 2002, 420: 629-635.
  • 2Sah VP Seashohz TM, Sagi SA, et al. The role of Rho in G protein couple receptor signal transduction[J]. Annu. Rev. Pharmacol Toxi- co, 2000, 40: 459-489.
  • 3Barthe C, de Bettignies G, Louver O, et al. First characterization of the gene in the yeast[J]. C.R. Aead. Sci.Ⅲ, 1998, 321(6): 453-462.
  • 4Roumanie O, Peypouquet M.F, Bonneu M, et al. Evidence for the ge- netic interaction between the actin-binding protein Vrp 1 and the RhoGAP Rgdl mediated through Rho3p and Rho4p in Saccharomy- ces eerevisiae[J]. Mol. Microbiol, 2000, 36(6): 1403-1414.
  • 5Gong T, Liao Y,He F, et al. Control of polarized growth by the Rho family GTPase Rho4 in budding yeast: requirement of the N-termi- nal extension of Rho4 and regulation by the RhoGTPase-activating protein Bem2[J]. Eukaryot. Cell, 2013, 12 (2): 368-377.
  • 6Zheng W, Chen J, Liu W, et al. A Rho3 homolog is essential for ap- pressorium development and pathogenicity of Magnaporthe grisea[J]. Eukaryot Cell, 2007, 6(12): 2240-2250.
  • 7Zheng W, Zhao Z, Chen J, et al. A Cdc42 ortholog is required for penetration and virulence of Magnaporthe grisea[J]. Fungal Genet. Biol., 2009, 46: 450-460.
  • 8Chen J, Zheng W, Zheng S, et al. Rac 1 is required for pathogenicity and Chml-dependent conidiogenesis in rice fungal pathogen[J]. PLoS Pathog, 2008, 4(11): e1000202.
  • 9王晓鸣,晋齐鸣,石洁,王作英,李晓.玉米病害发生现状与推广品种抗性对未来病害发展的影响[J].植物病理学报,2006,36(1):1-11. 被引量:236
  • 10吕国忠,陈捷,白金铠,王翠苹.我国玉米病害发生现状及防治措施[J].植物保护,1997,23(4):20-21. 被引量:100

二级参考文献72

  • 1甘贤友,周国顺,袁桂荣,张定法.玉米弯孢霉叶斑病初步研究[J].植物保护,1995,21(5):24-25. 被引量:46
  • 2盛骤 谢式千 潘承毅.概率与数理统计[M].北京:高等教育出版社,1989..
  • 3Birkenbihl R.P., Jach G., Saedler H., and Huijser P., 2005, Functional dissection of the plant-specific SBP-domain: overlap of the DNA binding and nuclear localization domains, Journal of Molecular Biology, 352(3): 585-596.
  • 4Cardon G., Hohmann S., Klein J., Nettesheim K., Saedler H., and Huijser P., 1999, Molecular characterisation of the Arabidopsis SBP-box genes, Gene, 237(1): 91-104.
  • 5Eriksson M., Moseley J.L., Tottey S., Del Campo J.A., Quinn J., Kim Y., and Merchant S., 2004, Genetic dissection of nutritional copper signaling in chlamydomonas distinguishes regulatory and target genes, Genetics, 168(2): 795-807.
  • 6Gandikota M., Birkenbihl R.P., Hohmann S., Cardon G.H., Saedler H., and Huijser P., 2007, The miRNA 156/157 recognition element in the 3'UTR of the Arabidopsis SBP box gene SPL3 prevents early flowering by translational inhibition in seedlings, The Plant Journal, 49(4): 683-693.
  • 7Jaillon O., Aury J.M., Noel B., Policriti A., Clepet C., Casagrande A., Choisne N., Aubourg S., Vitulo N., Jubin C., Vezzi A., Legeai F., Hugueney P., Dasilval C., Homer D., Mica E., Jublot D., Poulain J., Bruyere C., Billault A., Segurens B., Gouyvenoux M., Ugarte E., Cattonaro F., Anthouard V., Vieo V., Del Fabbro C., Alaux M., Di Gaspero G., Dumas V., Felice N., Paillard S., Juman I., Moroldo M., Scalabrin S., Canaguier A., Le Clainche I., Malacrida G., Durand E., Pesole G., Laucou V., Chatelet P., Merdinoglu D., Delledonne M., Pezzotti M., Lechamy A., Scarpelli C., Artiguenave F., Pb M.E., Valle G., Morgante M., Caboche M., Adam-Blondon A.F., Weissenbach J., Qurtier F., Wineker P., and French-Italian Public Consortium for Grapevine Genome Characterization, 2007, The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla, Naatre, 449(7161): 463-467.
  • 8Kizis D., Lumbreras V., and Pages M., 2001, Role of AP2/ EREBP transcription factors in gene regulation during abiotic stress, FEBS Letter, 498(2-3): 187-189.
  • 9Kropat J., Tottey S., Birkenbihl R.P., Depege N., Huijser P., and Merchant S., 2005, A regulator of nutritional copper signaling in Chlaraydomonas is an SBP domain protein that recognizes the GTAC core of copper response element, Proc. Natl. Acad. Sci., USA, 102(51): 18730-18735.
  • 10Lannenpaa M., Janonen I., Holtta-Vuori M., Gardemeister M., Porali I., and Sopanen T., 2004, A new SBP-box gene BpSPL1 in silver birch (Betula pendula), Physiol. Plant, 120(3): 491-500.

共引文献361

同被引文献30

引证文献2

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部