期刊文献+

基于差分的稀疏度自适应重构算法 被引量:11

Adaptive Sparse Recovery Based on Difference Algorithm
下载PDF
导出
摘要 针对压缩感知贪婪迭代重构算法要求给定信号稀疏度或迭代阈值的缺点,提出一种基于差分的稀疏度自适应重构算法.该算法在信号稀疏度未知的情况下,利用测量矩阵Φ与残差的相关系数的变化的不均衡特性,来选择重构信号的支撑集,以此逼近原始信号的稀疏度,达到重构的效果.仿真结果表明,在相同采样率下,文中算法可以获得较好的重构效果,尤其在采样率较低(采样率≤0.5)的情况下,这种优势更加明显. To improve the disadvantages that iterative reconstruction algorithms of compressed sensing need priori knowledge of the sparsity of original signal or iterative threshold, an adaptive sparse recovery based on difference algorithm is proposed. When the sparsity of original signal is unknown, the proposed algorithm takes advantage of unbalance of correlation coefficient between the measurement matrix and residual. With those properties, the proposed algorithm can select the support set of the original signal, and approach the sparsity of the original signal. Simulation results show that the proposed algorithm obtains better recovery results under the same conditions. Especially in the lower sampling rate, the advantage is more obvious.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2015年第6期1047-1052,共6页 Journal of Computer-Aided Design & Computer Graphics
基金 国家"八六三"高技术研究发展计划(2014AA015202) 国家自然科学基金(61073079 61272028) 中央高校基本科研业务费专项基金(2013JBZ003) 高等学校博士点基金(20120009110008) 教育部新世纪优秀人才支持计划(NCET-12-0768) 教育部创新团队发展计划(IRT201206)
关键词 压缩感知 稀疏度 重构算法 compressive sensing the sparsity the algorithm of recovery
  • 相关文献

参考文献19

  • 1Baraniuk R G, Compressive sensing[J]. IEEE Single Processing Magazine, 2007, 24(4): 118-121.
  • 2Donoho D L. Compressed sensing[J]. IEEE Transaction on In?formation Theory, 2006, 52(4): 1289-1306.
  • 3焦李成,杨淑媛,刘芳,侯彪.压缩感知回顾与展望[J].电子学报,2011,39(7):1651-1662. 被引量:317
  • 4李珅,马彩文,李艳,陈萍.压缩感知重构算法综述[J].红外与激光工程,2013,42(S01):225-232. 被引量:79
  • 5段世芳,马社祥.变步长稀疏自适应的迭代硬阈值图像重构[J].计算机工程与科学,2013,35(8):120-124. 被引量:4
  • 6FowerJ E, Mun S, Tramel E W. Block-based compressed sensing of images and video[J]. Foundations and Trends in Signal Processing, 2010, 4(4): 297-416.
  • 7Cendes, EJ. The restricted isometry property and its implica?tions for compressed sensing[J]. Comptes Rendus-Mathematique, 2008, 346(9): 589-592.
  • 8高睿,赵瑞珍,胡绍海.基于压缩感知的变步长自适应匹配追踪重建算法[J].光学学报,2010,30(6):1639-1644. 被引量:48
  • 9Ning B D, Qu X B, Guo D, et al. Magnetic resonance image reconstruction using trained geometric directions in 2D redun?dant wavelets domain and non-convex optirnization[J]. Mag?netic Resonance Imaging, 2013,31(9): 1611-1622.
  • 10Qu X B, Cao X M, Guo D, et al. Compressed sensing MRI with combined sparsifying transforms and smoothed eo norm minimization[C] II Proceeding of IEEE International Confer?ence on Acoustics, Speech, and Signal Processing. Los Alami?tos: IEEE Computer Society Press, 2010: 626-629.

二级参考文献139

  • 1杜振洲,周付根.基于帧间去相关的超光谱图像压缩方法[J].红外与激光工程,2004,33(6):642-645. 被引量:8
  • 2张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 3D L Donoho,M Elad,V Temlyakov.Stable recovery of sparse overcomplete representations in the presence of noise[J].IEEE Trans on Information Theory,2006,52(1):6-18.
  • 4N Mourad,J P Reilly.Direction-of-arrival estimation using a mixed L2,0 norm approximation[J].IEEE Transactions on Signal Processing,2010,58(9):4646-4655.
  • 5M M Hyder,K Mahata.Coherent spectral analysis of asynchronously sampled signals[J].IEEE Signal Processing Letters,2011,18(2):126-129.
  • 6D L Donoho.Compressed sensing[J].IEEE Trans on Information Theory,2006,52(4):1289-1306.
  • 7S Chen,D L Donoho,M A Saunders.Atomic decomposition by basis pursuit[J].SIAM J Sci Comput,1999,20(1):33-61.
  • 8P Rodríguez,B Wohlberg.An iterative reweighted norm algorithm for total variation regularization[J].IEEE Signal Processing Letters,2007,14(12):948-951.
  • 9H Mohimani,M Zadeh,C Jutten.A fast approach for overcomplete sparse decomposition based on smothed L0 norm[J].IEEE Transactions on Signal Processing,2009,57(1):289-301.
  • 10M Hyder,K Mahata.An improved smoothed L0 approximation algorithm for sparse representation[J].IEEE Transactions on Signal Processing,2010,58(4):2194-2205.

共引文献454

同被引文献73

  • 1冯建辉,杨玉静.基于灰度共生矩阵提取纹理特征图像的研究[J].北京测绘,2007,21(3):19-22. 被引量:131
  • 2Cand~s E J, Romberg J K, Tao T. Stable signal recovery from incomplete and inaccurate measurements [ J ]. Com- munications on Pure and Applied Mathematics, 2006,59 (8) : 1207-1223.
  • 3Qaisar S, Bilal R M, lqbal W, et al. Compressive sens- ing : From theory to applications, a survey [ J ]. Commu- nications and Network, Journal of, 2013, 15 ( 5 ) ~ 443- 456.
  • 4Cand~s E J, Tao T. Decoding by linear programming [ J ]. IEEE Transactions on Information Theory, 2005,51 (12) ~ 4203-4215.
  • 5Tropp J A, Gilbert A C. Signal recovery from random measurements via orthogonal matching pursuit [ J ]. IEEE Transactions on Information Theory, 2007, 53 ( 12 ) : 4655-4666.
  • 6Needle D, Vershynin R. Signal recovery from incomplete and inaccurate measurements via regularized orthogonal matching pursuit[ J]. IEEE Journal of Selected Topics in Signal Proeessing, 2010,4(2): 310-316.
  • 7Needell D, Tropp J A. CoSaMP: Iterative signal recovery from incomplete and inaccurate samples [ J ]. Applied on Computational Harmon Analysis, 2009,26 (3) : 301-321.
  • 8Wei Dai, Olgica Milenkovic. Subspace pursuit for com- pressive sensing signal reconstruction[ J]. IEEE Transac- tions on Information Theory, 2009, 55 (5) : 2230-2249.
  • 9Do T T, Lu Gan, Nguyen N, et al. Sparsity adaptive matching pursuit algorithm for practical compressed sens- ing[ C ]//Signals, System and Computers, 2008 42nd Asilomar Conference on. IEEE, 2008: 581-587.
  • 10Huang Hong-lin, Makur A. Backtracking-based matching pursuit method for sparse signal reconstruction[ J~. IEEE Signal Processing Letter, 2011, 18(7) : 391-394.

引证文献11

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部