期刊文献+

函数空间的小波逼近

Wavelets Approximation in Functional Spaces
下载PDF
导出
摘要 从研究Sobolev空间中函数的逼近入手,利用正交级数的分解来估计函数空间的模,用多分辨率分析构造逼近的性能,找到了Sobolev空间中基于小波逼近的函数的等价性描述和模的等价形式,并且类似地在Besov空间中进行讨论,给出了Besov空间中函数的等价性描述定理和模的等价形式以及相关证明过程,这一结论成为深入刻画函数空间的又一有效工具. Starting with approximation of functions in Sobolev spaces,by using the decomposition of orthonormal series to estimate the modulus in a functional space and constructing the characters of the approximation by multi-resolution analysis,an equivalent description of wavelet approximation in Sobolev spaces and the equivalent form of the modulus are obtained.Similar discussion in Besov spaces gives the equivalent theorem of the functions and the form of the modulus in these spaces.The conclusions provide another efficient tool for us to describe functional space.
出处 《四川师范大学学报(自然科学版)》 CAS 北大核心 2015年第3期359-364,共6页 Journal of Sichuan Normal University(Natural Science)
基金 国家自然科学基金(61263015) 内蒙古教育厅重点基金(2013NMJG029和2013NMJG031)资助项目
关键词 多分辨率分析 SOBOLEV空间 BESOV空间 分布 multi-resolution analysis Sobolev space Besov space distribution modulus
  • 相关文献

参考文献16

  • 1Jia R Q. Approximation by quasi- projection operators in Besov spaces [ J ]. J Approx Theory ,2010,162 (1) :186 -200.
  • 2Cohen A, Daubechies I, Feauvean J C. Biorthogonal bases of compact/y supported wavelets[ J]. Commun Pure Appl Math, 1992, 45:485 - 560.
  • 3Dahmen W, Kunoth A, Urban K. Biorthogonal spline - wavelets on the interval - stability and moment conditions [ J ]. Appl Corn- put Harmon Anal, 1999 (6) : 132 - 196.
  • 4Primbs M. On the computation of Gramian matrices for refinable bases on the interval[ J ]. Inter J Wavelets, Muhiresolution and Information Proeessing ,2008,6 ( 3 ) :459 - 479.
  • 5Jia R Q. Spline wavelets on the interval with homogeneous boundary conditions[ J]. Adv Comput Math,2009 (30) :177 -200.
  • 6Jia R Q, Wang J Z, Zhou D X. Compactly supported wavelet bases for sobolev spaces [ J ]. Appl Comput Harmon Anal ,2003,15 : 224 - 241.
  • 7Donoho D L. Interpolatory Wavelet Transforms [ M ]. Preprint, 1992.
  • 8Devore R A, Lorentz G G. Constructive Approximation[ M ]. New York : Springer - Verlag, 1993.
  • 9Cohen A. Wavelet Methods in Numerical Analysis [ M ]. Amsterdam:Elsevier,2003.
  • 10Yong R K. Wavelet Theory and Its Applications[ M ]. Boston:Kluwer Academic Publishers, 1993.

二级参考文献100

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部