期刊文献+

Super-long longitudinal magnetization needle generated by focusing an azimuthally polarized and phasemodulated beam 被引量:2

Super-long longitudinal magnetization needle generated by focusing an azimuthally polarized and phasemodulated beam
原文传递
导出
摘要 Based on the inverse Faraday effect, a super-long longitudinal magnetization needle can be induced by a trans- versely polarized needle-shaped electric field. This needle-shaped electric field can be obtained in the focal vol- ume of the objective by focusing an azimuthally polarized vortex beam that is modulated both radially and azimuthally by a specifically designed annular phase filter. The numerical calculation shows that the full widths at half-maximums in longitudinal direction and in transverse direction of the magnetization needle are 282 and 0.27λ. The corresponding needle aspect ratio of 103 is more than ten times larger than that of the magnetization needle fabricated by electron beam lithography. Based on the inverse Faraday effect, a super-long longitudinal magnetization needle can be induced by a trans- versely polarized needle-shaped electric field. This needle-shaped electric field can be obtained in the focal vol- ume of the objective by focusing an azimuthally polarized vortex beam that is modulated both radially and azimuthally by a specifically designed annular phase filter. The numerical calculation shows that the full widths at half-maximums in longitudinal direction and in transverse direction of the magnetization needle are 282 and 0.27λ. The corresponding needle aspect ratio of 103 is more than ten times larger than that of the magnetization needle fabricated by electron beam lithography.
出处 《Chinese Optics Letters》 SCIE EI CAS CSCD 2015年第5期79-83,共5页 中国光学快报(英文版)
关键词 Aspect ratio Electric fields Electron beam lithography MAGNETIZATION Polarization Aspect ratio Electric fields Electron beam lithography Magnetization Polarization
  • 相关文献

参考文献29

  • 1S. Y. Chou, M. S. Wei, P. R. Krauss, and P. B. Fischer, J. Appl. Phys. 76, 6673 (1994).
  • 2S. A. Nikitov, Ph. Tailhades, and C. S. Tsai, J. Magn. Magn. Mater. 236, 320 (2001).
  • 3D. Chiba, M. Sawicki, Y. Nishitani, Y. Nakatani, F. Matsukura, and H. Ohno, Nature 455, 515 (2008).
  • 4I. L. Lyubchanskii, N. N. Dadoenkova, M. I. Lyubchanskii, E. A. Shapovalov, and Th. Rasing, J. Phys. D 36, R277 (2003).
  • 5C. V. Saba, P. A. Barton, M. C. Boshier, I. C. Hughes, P. Rosenbusch, B. E. Sauer, and E. A. Hinds, Phys. Rev. Lett. 82, 468 (1999).
  • 6P. S. Pershan, Phys. Rev. 130, 919 (1963).
  • 7J. P. van der Ziel, P. S. Pershan, and L. D. Malmstrom, Phys. Rev. Lett. 15, 190 (1965).
  • 8P. S. Pershan, J. P. van der Ziel, and L. D. Malmstrom, Phys. Rev. 143, 574 (1966).
  • 9A. V. Kimel, A. Kirilyuk, P. A. Usachev, R. V. Pisarev, A. M. Balbashov, and Th. Rasing, Nature 435, 655 (2005).
  • 10C. D. Staciu, F. Hansteen, A. V. Kime[, A. Kirilyuk, A. Tsukamoto, A. Itoh, and Th. Rasing, Phys. Rev. Lett. 99, 047601 (2007).

同被引文献4

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部