期刊文献+

昆虫视觉启发的光流复合导航方法 被引量:5

An Optical Flow-based Composite Navigation Method Inspired by Insect Vision
下载PDF
导出
摘要 昆虫能够使用视觉感受的光流(Optical flow,OF)信息执行导航任务.启发于昆虫的视觉导航,本文提出了一种生物视觉启发的光流复合导航方法,它由光流导航和光流辅助导航两部分组成,以实现高效精确的视觉导航定位.该方法中,光流导航的作用是使用昆虫视觉启发的光流法,测量系统每一时刻的运动位移,然后使用路径积分累加位移得到位置信息;光流辅助导航的作用是针对路径积分会产生累积误差的缺点,使用光流匹配的方法来估计和修正导航中的位置误差.该光流辅助导航也参考了昆虫启发的光流法,通过基于光流的卡尔曼滤波器来执行实际和预测光流的迭代匹配.由于光流导航和光流辅助导航中的光流计算来源于同一昆虫启发光流法,使得光流复合导航的两部分可共享输入信号和部分执行过程.文中使用移动机器人进行导航实验,证明了该复合导航方法的效率. Many insects can use optical flow (OF) for various navigational tasks. Inspired by the OF navigation strategies of insects, this paper develops an OF-based composite navigation method for more e?cient and precise visual location. The composite navigation method is composed of an OF navigation and an OF aided navigation. The OF navigation is to measure motion at each step using an insect inspired OF method and the current position information is then obtained by path integration. As path integration can lead to increasing cumulative position errors, the OF aided navigation is thus employed to correct the position errors. This aided navigation implements an OF-based Kalman filter by studying the insect inspired OF method. It can iteratively match the actual and the predicted OF for a continuous error estimation. The OF navigation and the OF aided navigation are derived from the same OF method so that they can share input signals and some operations in navigation. Experiments using a mobile robot have demonstrated the e?ciency of the proposed composite navigation method.
出处 《自动化学报》 EI CSCD 北大核心 2015年第6期1102-1112,共11页 Acta Automatica Sinica
关键词 导航 昆虫视觉 光流 累积误差 Navigation insect vision cumulative error
  • 相关文献

参考文献27

  • 1Srinivasan M V. Going with the flow: a brief history of the study of the honeybee's navigational 'odometer'. Journal of Comparative Physiology A, 2014, 200(6): 563-573.
  • 2Wittlinger M, Wolf H. Homing distance in desert ants, Cataglyphis tort/s, remains unaffected by disturbance of walking behaviour and visual input. Journal of Physiology- Paris, 2013, 107(1-2): 130-136.
  • 3Chao H Y, Gu Y, Napolitano M. A survey of optical flow techniques for robotics navigation applications. Journal of Intelligent & Robotic Systems, 2014, 73(1-4): 361-372.
  • 4Srinivasan M V. An image-interpolation technique for the computation of optic flow and egomotion. Biological Cyber- netics, 1994, 7"1(5): 401-415.
  • 5Borst A. Correlation versus gradient type motion detec- tors: the pros and cons. Philosophical Transactions B, 2007, 362(8): 369-374.
  • 6Franceschini N. Small brains, smart machines: from fly vi- sion to robot vision and back again. Proceedings of the IEEE, 2014, 102(5): 751-781.
  • 7刘小明,陈万春,邢晓岚,殷兴良.光流/惯导多传感器信息融合方法[J].北京航空航天大学学报,2012,38(5):620-624. 被引量:6
  • 8曹炬,陶文兵,田金文.运用多个光学成像探测器估算目标距离[J].仪表技术与传感器,2004(3):50-52. 被引量:8
  • 9Cheng K, Freas C A. Path integration, views, search, and matched filters: the contributions of Rfidiger Wehner to the study of orientation and navigation. Journal of Comparative Physiology A, to be published.
  • 10Hostetler L, Andreas R. Nonlinear Kalman filtering tech- niques for terrain-aided navigation. IEEE Transactions on Automatic Control, 1983, 28(3): 315-323.

二级参考文献46

  • 1潘泉,杨峰,叶亮,梁彦,程咏梅.一类非线性滤波器——UKF综述[J].控制与决策,2005,20(5):481-489. 被引量:230
  • 2Yin Jianjun,Zhang Jianqiu,Mike Klaas.The Marginal Rao-Blackwellized Particle Filter for Mixed Linear/Nonlinear State Space Models[J].Chinese Journal of Aeronautics,2007,20(4):346-352. 被引量:16
  • 3Arenas-Garcia J,Camps-Valls G,Feature extraction from remote sensing data using kernel orthonormalized PLS .Proceedings of IEEE Geoscience and Remote Sensing Symposium (IGARSS) .Barcelona,2007.258-261.
  • 4Kuo B C,Li C H,Yang J M.Kernel nonparametric weighted feature extraction for hyperspectral image classification[J].IEEE Transactions on Geoscience and Remote Sensing,2009,47(4):1139-1155.
  • 5Yang J M,Yu P T,Kuo B C.A nonparametric feature extraction and its application to nearest neighbor classification for hyperspectral image data[J].IEEE Transactions on Geoscience and Remote Sensing,2010,48(3):1279-1293.
  • 6Watt R J,Phillips W A.The function of dynamic grouping in vision [J].Trends in Cognitive Sciences,2000,4(12):447-454.
  • 7Bergman N. Bayesian Inference in Terrain Navigation [D]. LINKOPING: Linkoping University, 1997.
  • 8Doucet A, Gordon N J, Krishnamurthy V. Particle filters for state estimation of jump Markov linear systems [J]. IEEE Transactions on Signal Processing, 2001, 49(3) : 613 - 624.
  • 9Ristic B, Arulampalam S, Gordon N. Beyond the Kalman Filter: Particle Filters for Tracking Applications [M]. Boston & London: Artech House Publishers, 2004.
  • 10Casella G, Robert C P. Rao-Blackwellisation of sampling schemes [J]. Biometrika, 1996, 83(1) : 81 - 94.

共引文献69

同被引文献19

引证文献5

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部